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Abstract. A local moment approach is developed for single-particle excitations of a symmetric
Anderson impurity model (AIM) with a soft-gap hybridization vanishing at the Fermi level:
1I ∝ |ω|r , with r > 0. Local moments are introduced explicitly from the outset, and a two-self-
energy description is employed in which single-particle excitations are coupled dynamically to
low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and
captures both the spin-fluctuation regime of strong coupling (largeU ), as well as the weak-coupling
regime where it is perturbatively exact for thoser-domains in which perturbation theory inU is non-
singular. While the primary emphasis is on single-particle dynamics, the quantum phase transition
between strong-coupling (SC) and local moment (LM) phases can also be addressed directly; for the
spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained,
notably for the behaviour of the criticalUc(r) separating SC/LM states and the Kondo scaleωm(r)

characteristic of the SC phase. Results for both single-particle spectra and SC/LM phase boundaries
are found to agree well with recent numerical renormalization group (NRG) studies; and a number of
further testable predictions are made. Single-particle spectra are examined systematically for both
SC and LM states; in particular, forall 06 r < 1

2 , spectra characteristic of the SC state are predicted
to exhibit anr-dependent universal scaling form as the SC/LM phase boundary is approached and
the Kondo scale vanishes. Results for the ‘normal’r = 0 AIM are moreover recovered smoothly
from the limitr → 0, where the resultant description of single-particle dynamics includes recovery
of Doniach–̆Sunjíc tails in the wings of the Kondo resonance, as well as characteristic low-energy
Fermi liquid behaviour and the exponential diminution withU of the Kondo scale itself. The
normal AIM is found to represent a particular case of more generic behaviour characteristic of the
r > 0 SC phase which, in agreement with conclusions drawn from recent NRG work, may be
viewed as a non-trivial but natural generalization of Fermi liquid physics.

1. Introduction

The Anderson impurity model (AIM) [1] is the archetype for describing dilute, correlated
magnetic impurities in metals. Reviewed comprehensively in [2], its essential strong-coupling
behaviour is that of the Kondo effect: the spin-1

2 impurity is quenched by coupling to low-
energy excitations of the non-interacting metallic host. But while thermodynamic properties of
the model are well understood, the same cannot be said for a theoretical description of dynamics,
in particular that of single-particle excitations. Here a wide variety of theories have been
developed, including the non-crossing approximation (NCA) [3–6], 1/N expansions [7–9] and
slave-boson approaches [10–12]. Their undoubted successes notwithstanding, however, each
has significant limitations. They are designed to capture theN →∞ limit (as opposed to the
spin-12 case,N = 2), and the extreme asymmetric limit ofU = ∞ with U the local (impurity)
interaction: extension to finiteU is not straightforward. The NCA describes well high-energy
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single-particle excitations embodied in the Hubbard satellite bands, but fails to capture the low-
energy Fermi liquid behaviour of the Kondo resonance. Slave-boson approaches by contrast
are much less satisfactory on high-energy scales, their virtue being to handle low energies and
Fermi liquid behaviour. Even here however they are limited: in common with 1/N expansions,
they cannot for example recover the Doniach–S̆unjíc tails [13] in the Kondo resonance that are
observed in numerical renormalization group [14] and quantum Monte Carlo [15] studies of
the AIM, and known to be important experimentally [16].

The normal AIM has of course one ‘simplifying’ feature: the host is metallic by
presumption, whence the host–impurity coupling embodied in the hybridization function1(ω)

is essentially frequency independent and controlled by its value at the Fermi level,ω = 0;
in consequence, and excepting the atomic limit where the impurity/host trivially decouple,
the impurity spin is quenched and the system is a conventional Fermi liquid for allU > 0
(see e.g. [2]). The brief remarks above are nonetheless not confined to this problem, but
symptomatic in general of the widely accepted need for new theoretical approaches to strongly
correlated electrons. And the challenge is naturally more acute when1(ω)acquires a frequency
dependence that can lead to qualitatively new physics, and in particular the possibility of non-
trivial zero-temperature phase transitions. One example of such arises in the lattice-based
Hubbard model, which within the framework of dynamical mean-field theory (or the infinite-
dimensional limit) maps onto an effective AIM [17] with a hybridization that is a functional
of the impurity Green function, and is hence bothω-dependent and to be determined self-
consistently. The quantum phase transition here is the celebrated and still controversial Mott
transition, occurring at a criticalUc in the paramagnetic phase of the half-filled (particle–hole-
symmetric) model: between a gapless Fermi liquid metal, and a gapped local moment insulator
characterized by akB ln 2 residual entropy (for reviews, see e.g. [18–20]).

A second example, considered in this paper, is the soft-gap AIM appropriate to a semi-
metallic host, or one that itself may be viewed as being on the verge of a simple band-crossing
metal–insulator transition: in which the (imaginary part of the) hybridization function exhibits
a soft-gap at the Fermi level,1I(ω) ∝ |ω|r with r > 0, in contrast to the normal ‘metallic’
AIM, r = 0, for which1I(ω = 0) is constant. This problem, for which a wide range of
possible experimental candidates arise (see e.g. [21]), was first studied by Withoff and Fradkin
[22] in the context of the corresponding soft-gap Kondo model, using both ‘poor man’s’ scaling
and a large-N mean-field theory. Much study of the soft-gap Kondo and Anderson models
has since ensued, in particular via scaling [22, 23], large-N expansions [22, 24, 25], the
numerical renormalization group (NRG) [21, 23, 26–28] and perturbation theory inU [29].
It is known thereby that two distinct ground states exist, between which in general a quantum
phase transition occurs at a finite criticalUc(r): a doubly degenerate local moment (LM) state
in which the impurity spin remains unquenched; and a strong-coupling (SC) state in which the
impurity spin is locally quenched, and a Kondo effect is manifest.

The underlying physics is known to be particularly rich for the particle–hole-symmetric
model, to which NRG studies in particular have devoted considerable attention, including
both thermodynamic properties [21, 26–28] and impurity single-particle spectra [28]. It is
the symmetric spin-12 soft-gap AIM that we consider here, by developing a microscopic ‘local
moment approach’ that has recently been applied successfully to the normal (r = 0) AIM
[30]. Our primary focus is thus an analytical treatment of single-particle dynamics—on all
energy scales, and for any interaction strengthU—as embodied in the impurity Green function,
G(ω), and hence spectrumD(ω) ∝ ImG(ω); although an integral element of the approach
also permits statics, in the form of the SC/LM transition and associated phase boundaries, to
be addressed directly.

The resultant theory, which seeks in particular to capture the spin-fluctuation regime of
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strong coupling (largeU ) but is also perturbatively exact in weak coupling for thoser-domains
in which straight perturbation theory inU is known to be applicable [29], appears to be rather
successful. Its predictions for single-particle spectra and SC/LM phase boundaries agree
well, both qualitatively and quantitatively, with extant NRG calculations [21, 28] that provide
essentially exact numerical results for the problem. In the spin-fluctuation regime of strong
coupling a number of asymptotically exact results are obtained, in particular for the Kondo
scale characteristic of the SC phase and the low-r behaviour of the criticalUc(r). Results
for the normal AIM [30] are moreover obtained smoothly from the limitr → 0, where the
resultant description of single-particle dynamics includes recovery of the Doniach–S̆unjíc tails,
as well as characteristic low-ω Fermi liquid behaviour and the exponentiality of the Kondo
scale. We find in fact that the normal AIM constitutes in many ways just a particular case of
more generic behaviour characteristic of ther > 0 SC state, which we argue may be regarded
as a ‘generalized Fermi liquid’, in agreement with the conclusions drawn by Gonzalez-Buxton
and Ingersent [21] from detailed NRG studies. One manifestation of this is the prediction
that, for all r ∈ [0, 1

2), single-particle spectra characteristic of the SC state should acquire
a universal scaling form as the SC/LM phase boundary is approached, thus generalizing to
finite-r behaviour that is familiar in the context of the normal AIM [14, 15]; this and related
predictions of the present theory will be tested against NRG calculations in a subsequent
publication [31].

The paper is organized as follows. A brief introduction to the soft-gap AIM is given
in section 2, where two facets are highlighted. First, the non-interacting limitU = 0. Its
behaviour, in contrast to that of the normal AIM, is non-trivial: both SC and LM states arise, for
r < 1 andr > 1 respectively, and with distinct signatures in the underlying spectral functions
[29]. Second, we emphasize the generalized pinning condition established by us previously
[29], wherebyA(ω) = |ω|rD(ω) is pinned at the Fermi levelω = 0 for anyr andU where a
SC state obtains; and which represents a generalization of the corresponding condition familiar
for ther = 0 AIM where it is normally viewed as a consequence of the Friedel sum rule (see
e.g. [2]). Imposition of this spectral pinning as a self-consistency condition plays a central role
in the current work.

In section 3 we introduce the ‘two-self-energy’ description that underlies the present
theory. Such an approach is physically natural if one aims to describe the doubly degenerate
LM state; and, we would argue, is at least desirable if one seeks to construct a non-perturbative
theory that can simultaneously handle the possibility of both LM and SC states, and hence the
transition between them. As for the normal AIM [30], our approach to the interaction self-
energies starts from the simplest non-trivial mean-field approximation in which the notion of an
impurity local moment, determined self-consistently, is introduced explicitly from the outset:
unrestricted Hartree–Fock (UHF), as considered by Anderson in his original paper [1] on the
r = 0 AIM. The deficiencies of this static mean-field approximationper seare of course
severe; but it is in large part a physical understanding of them, considered in section 4.2,
that enables a subsequent many-body approach to be developed successfully. Moreover,
and in contrast to the normal AIM, even UHF is non-trivial for the soft-gap problem: as
shown in section 4.1 it gives rise for example to a phase diagram that, in predicting, for
all finite U , solelyLM states for anyr > 1

2, concurs qualitatively with the results of NRG
calculations [21, 28].

Dynamical many-body contributions to the self-energies, over and above the Fock term
alone retained at simple mean-field level, are detailed in section 5 for both SC and LM states. In
physical terms these embody coupling of single-particle excitations to low-energy transverse
spin fluctuations, and capture the dynamical spin-flip scattering required in particular to
describe the Kondo, or spin-fluctuation, regime. SC states are obtained via self-consistent
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imposition of the generalized pinning condition, the limits of stability of solutions to which
in turn give the criticalUc(r) for the SC/LM transition. In this way, as for ther = 0 AIM
[30], the Kondo or spin-flip scaleωm ≡ ωm(r) arises naturally within the present approach,
and is found to be non-zero throughout the entire SC phase, vanishing continuously only as
the SC/LM phase boundary is approached,U → Uc(r)−. ForU > Uc(r) in the LM phase,
by contrast,ωm(r) = 0: as expected physically for a doubly degenerate state, where there is
no energy cost for a local spin flip.

Resultant phase boundaries between SC and LM states are considered in section 6;
including (section 6.3) their predicted one-parameter scaling behaviour in the regimes
U/D � 1 and�1 (with D the bandwidth of the host spectrum or hybridization function),
and detailed comparison with extant NRG results [21, 28] (section 6.4). The evolution and
critical behaviour of the SC Kondo scaleωm(r) is considered in section 6.1. Particular
emphasis is given here to smallr � 1 where salient results can be extracted analytically;
and which is of evident importance in connecting to the normalr = 0 AIM, for which
the exact exponential asymptotics of the Kondo scale are correctly recovered. Asr → 0,
the criticalUc(r) for the SC/LM boundary is found to be∝1/r, and the condition for the
Schrieffer–Wolff transformation [32] mapping the soft-gap AIM to the corresponding Kondo
model is thus satisfied. The critical exchange couplingJc(r) for the soft-gap Kondo model
asr → 0 can thus be obtained from the present approach (section 6.2); and is found to be
given precisely by the scaling result obtained originally by Withoff and Fradkin [22], which
we argue is asymptotically exact.

Single-particle impurity spectra, and their evolution with interaction strengthU from
strong to weak coupling, are considered explicitly in sections 7 and 8. The ‘bare’D(ω) are
discussed in section 7, on all energy scales and for both SC and LM states. Many-body
broadening of the high-energy Hubbard satellites, whose existence is well known for the
normal AIM (see e.g. [6, 30]), is argued to arise also in the soft-gap problem and shown to
be correctly recovered by the present approach; as too are the characteristicω → 0 spectral
signatures of the SC and LM phases found in NRG calculations [28], namelyD(ω) ∼ |ω|−r
and∼ |ω|r respectively. The behaviour of the spectra in weak coupling,U → 0, is considered
in section 7.1. Forr < 1

2 where both theU → 0 and theU = 0 ground states are SC,and
for r > 1 where the ground state is found to be LM for allU > 0, the theory is shown to be
perturbatively exact to (and including) second order inU about the non-interacting limit. For
1
2 < r < 1 by contrast, theU > 0 ground state is found to be LM but the non-interacting
ground state is SC [29]; and the natural breakdown of conventional perturbation theory inU is
clearly evident in the non-analyticity (inU ) of the conventional ‘single’ self-energy asU → 0.
Explicit comparison to single-particle spectra obtained from NRG calculations [28] is made
in section 7.2, and excellent agreement is found.

Finally, we consider in section 8 the spectral functionsA(ω) = |ω|rD(ω) in the SC
phase—‘modified’ to remove the|ω|−r divergence at lowω that is symptomatic of the SC
state, and which is entirely unrenormalized by interaction effects [29]. TheA(ω) are found
to exhibit familiar characteristics: they are pinned at the Fermi level,ω = 0, and contain a
generalized Kondo resonance whose width is proportional to the Kondo scaleωm(r) and thus
narrows progressively asU is increased towards the SC/LM phase whereωm(r) vanishes. This
is just as found for the normal AIM (see e.g. [2, 14, 15]) where the critical(U/10)r=0 = ∞
(reflecting the fact that the SC/LM transition here coincides trivially with the atomic limit).
Moreover, as for ther = 0 AIM, we find generally foranygivenr < 1

2 that asU → Uc(r)−,
the A(ω) becomes a universal function ofω/ωm(r); with a scaled Kondo resonance that
exhibits characteristicr-dependent low-frequency behaviour, as well as Doniach–S̆unjíc tails
in the ‘wings’ of the spectrum forω/ωm(r) & 1.
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2. Background

We begin with some necessary background, particularly in relation to the non-interacting limit
(section 2.1), and the generalized spectral pinning condition characteristic of a SC state with
U > 0 [29] (section 2.2).

With the Fermi level taken as the energy origin, the Hamiltonian for the spin-1
2 Anderson

model is given in standard notation by

Ĥ = Ĥhost+ Ĥimpurity + Ĥhybridization

=
∑
k,σ

εkn̂kσ +
∑
σ

(εi + 1
2Un̂i−σ )n̂iσ +

∑
k,σ

Vik(c
†
iσ ckσ + c†

kσ ciσ ) (2.1)

with εk the host dispersion,Vik the hybridization andεi the impurity level; for the symmetric
Anderson model considered here,εi = −U/2 withU the on-site interaction.

We focus on the zero-temperature single-particle impurity Green function, defined by

G(t) = −i〈T {ciσ (t)c†
iσ }〉 = G+(t) +G−(t) (2.2)

and separated for later purposes into retarded and advanced components; sinceĤ is invariant
underσ →−σ ,G is naturally independent of spin,σ . We add that while the primary physical
content ofG(ω) is that of single-particle dynamics, analysis of it will also enable identification
of the phase boundaries between SC and LM states, as detailed in sections 5 and 6.

2.1. Non-interacting limit

ForU = 0, the impurity Green functiong(ω) is given by

g(ω) = [ω + iη sgn(ω)−1(ω)]−1
: η→ 0+ (2.3)

and is determined by the hybridization function

1(ω) =
∑
k

|Vik|2
ω − εk + iη sgn(ω)

= 1R(ω)− i sgn(ω)1I(ω) (2.4a)

with

1I(ω) = π
∑
k

|Vik|2δ(ω − εk). (2.4b)

We consider a symmetric hybridization,1(ω) = −1(−ω), and in particular a power-law form

1I(ω) = 10|ω|rθ(D − |ω|) (2.5)

with r > 0 and bandwidthD (θ(x) being the unit step function). A pure power-law hybrid-
ization, while naturally not realistic on arbitrary scales, captures the requisite low-ω behaviour
in the simplest way; moreover, as is familiar from the usualr = 0 Anderson model (see
e.g. [2]), one expects impurity properties to be controlled primarily by the low-ω behaviour
and largely independent of detailed band structure. Note also from equation (2.4b) that to
specify1I(ω), the{Vik} and host eigenvalues{εk} do not require separate specification; but
that for the particular case of constantVik = V (considered in section 6.2),1I(ω) and the host
spectrumρhost(ω) are simply related:

1I(ω) = πV 2ρhost(ω). (2.6)

The real part of the hybridization,1R(ω), follows from a Hilbert transform, namely

FR(ω) =
∫ ∞
−∞

dω1

π
FI(ω1)P

(
1

ω − ω1

)
(2.7)
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with F = 1; and hence

1R(ω) = sgn(ω)10|ω|r 2

π

∫ D/|ω|

0
dy

yr

(1− y2)
(2.8)

where a principal value is henceforth understood. We shall require explicitly only the low-ω

behaviour of1R(ω), given from equation (2.8) (for anyr > 0) by

1R(ω) = −sgn(ω)10

{
tan

(
π

2
r

)
|ω|r +

2Dr

π(r − 1)

|ω|
D

+ O

[( |ω|
D

)3
]}

. (2.9)

Notice from equation (2.8) that the wide-band limitD→∞, as commonly employed for the
normal Anderson modelr = 0 (see e.g. [2]), can be taken forr < 1; and for this case,

1R(ω) = −sgn(ω)10 tan

(
π

2
r

)
|ω|r ∀ω.

Given the hybridization function, the non-interactingg(ω) = Reg(ω)− iπ sgn(ω)d0(ω)

follows directly from equation (2.3). All relevant impurity properties are determined
by the spectral densityd0(ω), including ‘excess’ thermodynamic functions induced by
addition of the impurity, and local properties such as the impurity susceptibilityχ0

ii (T ) =
−gµB(∂〈Ŝiz〉/∂h)|h=0 (with h a magnetic field acting solely on the impurity). Details are
given in [29]; here we summarize results relevant to the present work.

The key feature of the non-interacting limit is that LM states occur exclusively forr > 1
and SC states forr < 1; with clear signatures of the respective phases apparent in the single-
particle spectrumd0(ω). Forr > 1 (LM), d0(ω) is given for|ω| < D by

d0(ω) = qδ(ω) + db
0(ω) : r > 1 (2.10a)

and contains both a discrete state atω = 0, with poleweightq = [1− (∂1R/∂ω)ω=0]−1 given
from equation (2.9) by

q−1 = 1 +
210D

r−1

π(r − 1)
(2.10b)

and a continuum (or ‘band’) piecedb
0(ω) ∼ |ω|r−2 asω→ 0. The pole contribution tod0(ω)

is the characteristic spectral signature of theU = 0 LM state. It produces [29] for example a
local susceptibilityχ0

ii (T ) = (q2/2)χCurie(T ) asT → 0, i.e. limT→0 T χ
0
ii (T ) = q2(gµB)

2/8:
the impurity spin remains unquenched, symptomatic of a LM state. Forr < 1 (SC) by contrast,
there is noω = 0 pole contribution andd0(ω) ≡ db

0(ω) is given asω→ 0 by

db
0(ω) =

|ω|−r
π10

[
1 + tan2((π/2)r)

] + O(|ω|1−2r ) : r < 1 (2.11)

for any r > 0, with a characteristic|ω|−r divergence for 0< r < 1. In consequence [29],
limT→0 T χ

0
ii (T ) = 0: the spin is quenched as occurs for the normalr = 0 Anderson model,

one reason why the SC state may be regarded [21, 29] as a natural generalization of conventional
Fermi liquid physics.

2.2. SC state: spectral pinning

For U > 0 the impurity Green function,G(ω) = X(ω) − iπ sgn(ω)D(ω) (=−G(−ω) by
particle–hole symmetry), may be expressed as

G(ω) = [ω + iη sgn(ω)−1(ω)−6(ω)]−1
(2.12)
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where

6(ω) = 6R(ω)− i sgn(ω)6I(ω) (2.13)

is an interaction self-energy whose real/imaginary parts are related by the Hilbert transform
equation (2.7) withF = 6. (Note that6(ω) is defined to exclude the trivial Hartree
contribution: from particle–hole symmetry the Fermi level remains fixed atω = 0 for all
U > 0 (and anyr), whence the impurity chargeni =

∑
σ 〈n̂iσ 〉 = 1 ∀U and thus the Hartree

contribution of(U/2)ni = U/2 trivially cancelsεi = −U/2.)
In [29] we have established conditions upon6(ω) for a SC state to arise forU > 0. These

are, very simply, that6I(ω) (and hence6R(ω)) should decay to zero asω→ 0 more rapidly
than|ω|r (with r < 1), i.e.

6I(ω)
ω→0∼ α|ω|λ : λ > r (2.14)

with λ > r. In consequence, as follows directly from equation (2.12), the low-frequency
behaviour ofD(ω) is that ofd0(ω); hence from equation (2.11),

D(ω)
ω→0∼ |ω|−r

which is indeed the spectral signature of the SC state found in finite-U NRG studies [28].
Further, using

lim
ω→0
|ω|rD(ω) = lim

ω→0
|ω|rd0(ω) (2.15)

and defining the modified spectral function

A(ω) = |ω|rD(ω) (2.16a)

equation (2.11) yields the pinning condition

π10
[
1 + tan2((π/2)r)

]
A(ω = 0) = 1 (2.16b)

for all U andr where a SC state obtains. This result will prove central to our analysis in the
following sections. It encompasses as a special case the well known result for the normalr = 0
Anderson model (see e.g. [2]): thatπ10D(ω = 0) = 1—the impurity spectrum is pinned at
the Fermi levelω = 0 for anyU where a normal Fermi liquid state obtains (in that case all
U > 0). Equation (2.16) generalizes the pinning condition to arbitraryr for a SC state, and
reflects the fact that interactions have no influence in renormalizing the asymptotic behaviour
of D(ω) asω → 0, again consistent with the view [21, 29] that the SC state constitutes a
natural generalization of Fermi liquid behaviour.

3. Two-self-energy description

Equation (2.12) merely defines a single self-energy6(ω), via a Dyson equation

G(ω) = g(ω) + g(ω)6(ω)G(ω) (3.1)

that does not by itself enable a calculation of the impurity Green function. And while at
first sight it may invite a perturbative treatment inU about the non-interacting limit (where
G(ω) ≡ g(ω)), there are two reasons to be wary of such an approach. First, the general
applicability of such is not obvious in the soft-gap problem: indeed, as discussed in [29],
there is evidence to suggest that forr ∈ [ 1

2, 1], perturbation theory inU is inapplicable as
U → 0 (a point to which we return again in section 7.1). Second, and more generally, even
if a perturbative approach inU is possible for sufficiently lowU—as it is known to be [29]
for 0 6 r < 1

2 andr > 1—straight perturbation theory in the interaction strength naturally
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cannot capture the transition between SC and LM states. For this, one requires an inherently
non-perturbative approach that is capable of describing both the doubly degenerate LM state
and the SC (or generalized Fermi liquid) state, and hence the quantum phase transition between
them.

To this end, and noting that direct calculation of a single self-energy is not sacrosanct, we
follow recent work [30] on the normalr = 0 Anderson model and adopt a two-self-energy
description, with the impurity Green function expressed formally as

G(ω) = 1
2

[
G↑(ω) +G↓(ω)

]
(3.2)

where

Gσ(ω) =
[
ω + iη sgn(ω)−1(ω)− 6̃σ (ω)

]−1
(3.3)

with interaction self-energies̃6σ(ω) (and σ = ↑/↓ or +/−). Such a description is
self-evidently natural for describing a doubly degenerate LM state and, more generally, is
appropriate if one seeks to construct a non-perturbative theory starting from either the atomic
limit (Vik = 0, where6σ(ω) = − 1

2σU ) or an unrestricted Hartree–Fock (UHF) mean-field
approach. It is the latter strategy that we adopt and, although the deficiencies of a simple
UHF approach byitself are significant, use of it as a starting point for a genuine many-body
treatment will be shown to yield a rather successful description of the soft-gap problem, as
well as the normalr = 0 Anderson model considered hitherto [30].

For the symmetric case under consideration, particle–hole symmetry implies

G↑(ω) = −G↓(−ω) (3.4)

(and thus alsoD↑(ω) = D↓(−ω) for the corresponding spectral densitiesDσ(ω) =
−π−1 sgn(ω) ImGσ(ω)); from which, since1(ω) = −1(−ω), equation (3.3) implies

6̃↑(ω) = −6̃↓(−ω). (3.5)

In consequence, from equations (3.2) and (2.12), the impurity Green function and single self-
energy satisfy the familiar conditions

G(ω) = −G(−ω) 6(ω) = −6(−ω). (3.6)

Equations (3.4)–(3.6) merely express a basic symmetry, which must of course be satisfied by
any approximate theory; and equation (3.5) in particular shows that it is sufficient to consider
only one of the6̃σ (ω), say 6̃↑(ω). Once a theory for6̃↑(ω) has been developed, direct
comparison of equations (3.2), (3.3) with equation (2.12) permits, if desired,6(ω) to be
determined, via

6(ω) =
1
2[6̃↑(ω)− 6̃↑(−ω) + 2g(ω)6̃↑(ω)6̃↑(−ω)]

1− 1
2g(ω)[6̃↑(ω)− 6̃↑(−ω)]

(3.7)

whereg(ω) is the non-interacting Green function, equation (2.3).
The 6̃σ (ω) are obviously not calculable exactly, but diagrammatic perturbation theory

based upon a UHF mean-field state can be employed to develop suitable (and indeed asymp-
totically exact) approximations as detailed in section 5. To this end it is helpful to separate the
full interaction self-energies as

6̃σ (ω) = −σ
2
U |µ| +6σ(ω) (3.8)

where± 1
2U |µ| is the purely static Fock contribution which alone survives at UHF level (with

|µ| the local moment magnitude); and where the6σ(ω)—to which the symmetry equation (3.5)
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also applies—contains the dynamics that, at low frequencies in particular, are naturally central
to the problem.

Before proceeding we note that conditions upon6̃σ (ω) for a SC state to arise forU > 0 are
readily established, independently of any specific approximation. As in section 2.2 we consider
explicitly r < 1 (since a SC state must be perturbatively continuable from the non-interacting
limit and for r > 1 theU = 0 ground state is a LM one [29]). The requisite conditions
upon6̃σ (ω) are identical to those of section 2.2 for6(ω): the real and imaginary parts of
6̃σ (ω) must decay to zero asω → 0 more rapidly than1I/R ∼ |ω|r . From equations (3.2),
(3.3) theω → 0 behaviours ofG↑(ω),G↓(ω) andG(ω) then coincide, and reduce to that of
the non-interacting limit; equation (2.15) is thus satisfied, and in consequence the generalized
spectral pinning condition characteristic of the SC state, equation (2.16b), follows.

Finally, notice that a necessary condition for a SC state to arise is thus6̃σ (ω = 0) = 0
(which from equation (3.5) is independent of spin,σ ); or equivalently, from equation (3.8):

6↑(ω = 0) = 1

2
U |µ|. (3.9)

The practical importance of this condition will become apparent in section 5, for while
necessary but nota priori sufficient for a SC state, its imposition as a self-consistency condition
underlies our analysis of the SC phase, in direct parallel to our previous work on the normal
r = 0 Anderson model [30].

4. Mean field

We start from the simplest non-trivial mean-field approximation, namely UHF as considered
in Anderson’s original paper [1]. This has two essential characteristics: that the notion of an
impurity local moment (µ) is introduced explicitly from the outset; and that it is determined
self-consistently, viaµ = 〈n̂i↑ − n̂i↓〉0 (with 〈· · ·〉0 an average over the mean-field ground
state). There are three reasons for first considering this superficially simple one-body approx-
imation. First, the UHF Green functions form the bare propagators for the dynamical many-
body approach developed in sections 5ff. Second, a physical understanding of its limitations,
often alluded to but rarely exposed, underpins what is required to go successfully beyond
it. Finally, we show that even UHF by itself has virtues, producing a number of non-trivial
predictions that are in qualitative accord with sophisticated approaches; notably thatonlyLM
states arise forr > 1

2, in agreement with detailed NRG calculations [21, 28].
The essence of UHF is that the self-energies6̃σ (ω) (equation (3.8)) are purely static: only

the Fock term is retained, and̃60
σ = − 1

2σU |µ|. The impurity Green function at UHF level,
G0(ω) = ReG0(ω)− iπ sgn(ω)D0(ω), is thus

G0(ω) = 1
2

[
G↑(ω) + G↓(ω)

]
(4.1)

where

Gσ (ω) =
[
ω + iη sgn(ω) +

σ

2
U |µ| −1(ω)

]−1

(4.2)

with corresponding spectral densitiesD0
σ (ω) = −π−1 sgn(ω) ImGσ (ω) given by

D0
σ (ω) =

[η +1I(ω)] π−1

[ω + (σ/2)U |µ| −1R(ω)]
2 + [η +1I(ω)]

2 . (4.3)

Quite generally there are three energy scales in the problem, namely1
1/(1−r)
0 , U andD; we

choose to rescale in terms of11/(1−r)
0 , defining for later purposes a reduced interaction strength
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and bandwidth respectively by

Ũ = U

1
1/(1−r)
0

D̃ = D

1
1/(1−r)
0

(4.4)

as well as a dimensionless frequency,ω̃ = ω/11/(1−r)
0 .

4.1. Mean-field phase boundary

The local moment|µ| is of course found self-consistently, as described below. If|µ| = 0
thereby arises, then from equations (4.2), (4.3) the UHF propagators and spectra reduce to
those of the non-interacting limit summarized in section 2.1:D0

σ (ω) ≡ d0(ω). If |µ| 6= 0 by
contrast, equation (4.3) (with equations (2.5), (2.9) for1I/R) show the low-frequency behaviour
of D0

σ (ω) to be

D0
σ (ω)

ω→0∼ 10

π( 1
2U |µ|)2

|ω|r (4.5)

independent of spinσ . Equation (4.5) thus gives the low-ω behaviour of the full UHF spectrum
D0(ω) = 1

2

[
D0
↑(ω) +D0

↓(ω)
]
; and we note immediately thatD(ω) ∼ |ω|r is in fact the spectral

hallmark of the LM regime obtained from finite-U NRG calculations [28]. We also add in
passing that for finite bandwidthD, and regardless ofU , there are always discrete (pole)
contributions to theD0

σ (ω) outside the band,|ω| > D. These are included in all specific
calculations (section 6ff), but are of little importance to the problem and are not discussed
explicitly in what follows.

At pure UHF level the local moment is determined self-consistently from

|µ| =
∫ 0

−∞
dω

[
D0
↑(ω)−D0

↓(ω)
]
. (4.6)

Noting from equation (4.3) that theD0
σ (ω) depend onU and|µ| solely via the combination

x = 1

2
U |µ| (4.7)

equation (4.6) is thus of form

(|µ| =) 2x

U
= f (x). (4.8)

The UHF phase boundaryUc ≡ U0
c (r) is now readily ascertained from thex → 0 behaviour

of f (x), noting thatx → 0 may correspond either to (i)|µ| → 0 at some finite criticalUc

as one might naively anticipate; or (ii)Uc = 0 and|µ| either vanishing or remaining finite as
U → 0. With

f (x)
x→0∼ xm (4.9a)

and hence from equation (4.8)

1

U

x→0∼ xm−1 (4.9b)

the above possibilities are distinguished by different values of the exponentm. If m = 1 then
Uc is finite and given by

2

Uc
=
(
∂f (x)

∂x

)
x=0

: m = 1. (4.10a)
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If by contrast 0< m < 1, then equation (4.9b) showsUc = 0 and

|µ| U→0∼ Um/(1−m) : 0< m < 1 (4.10b)

vanishes asU → 0. Finally, ifm = 0, thenUc = 0 but

|µ| U→0∼ finite :m = 0 (4.10c)

tends to a finite limit asU → 0+.
All three possibilities are realized in practice, as now summarized (details are given in

the appendix). Forr < 1
2, m = 1 results: there is a finite criticalU0

c (r) separating LM
states (U > U0

c (r), |µ| > 0) from SC states (U < U0
c (r), |µ| = 0). For r ∈ ( 1

2, 1) by
contrast, 0< m = (1 − r)/r < 1; while m = 0 for r > 1. It follows directly that for
r < 1

2 both SC and LM states may arise, while forr > 1
2 exclusively LM states occur for all

U > 0. This is as found in finite-U NRG calculations [21, 28]. It is moreover specific to the
particle–hole-symmetric case under consideration: for the asymmetric case, analysis of the
UHF equations yields a finiteU0

c (r) even forr > 1
2; this is again in qualitative agreement with

NRG results [21].
The resultant mean-field phase boundary is shown explicitly in figure 1 for the wide-band

limit D = ∞ (which depends solely on the ratiõU = U/11/(1−r)
0 ); for later comparison to

NRG results, the figure shows the critical10U
r/U (=Ũ r−1), versusr. Forr < 1

2, the critical
U0

c (r) is finite and given from equation (4.10a) using equations (4.8), (4.6) and (4.3) by

2

U0
c (r)
= − 4

π

∫ 0

−∞
dω

1I(ω) [ω −1R(ω)]

([ω −1R(ω)]
2 +12

I (ω))
2
. (4.11)

0.0 0.2 0.4 0.6 0.8 1.0

r

0

2

4

6

 ∆
0U

r /U SC

LM

Figure 1. Mean-field phase boundary(10U
r/U)c versusr (for the wide-band limit). Forr > 1

2 ,
solely LM states occur for allU > 0.

Since1I/R ∼ |ω|r asω → 0, the low-ω behaviour of the integrand is∼|ω|−2r ; the
integral thus converges forr < 1

2, andU0
c (r) ∼ (1− 2r) asr → 1

2−, producing the square-
root divergence in the phase boundary evident in figure 1:10U

r/U ∼ (1− 2r)−1/2.
Forr > 1

2 by contrast, even the simple mean-field analysis predicts solely a LM phase for
anyU > 0. Recall however that for the non-interacting limitU = 0, the ground state is LM
for r > 1 but SC forr < 1 [29] (see section 2.1). Hence for1

2 < r < 1, there is a critical line
Uc(r) = 0 ‘separating’ SC and LM states. This underlies why low-order perturbation theory
in U about the non-interacting limit is inapplicable forr ∈ [ 1

2, 1] [29] (see also section 7.1);
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and the subtlety ofU → 0 is already evident at mean-field level from the fact that the UHF
|µ| vanishes in a non-analytic fashion, namely

|µ| U→0∼ U(1−r)/(2r−1) : r ∈ ( 1
2, 1). (4.12)

For r > 1 by comparison, the ground state is LM for allU > 0; and|µ| remains finite as
U → 0 (equation (4.10c)). In fact, as shown in the appendix, theU = 0+ limit of |µ| is

|µ| = q : U = 0+, r > 1 (4.13)

whereq (equation (2.10b)) is precisely the weight of theω = 0 pole in the non-interacting
single-particle spectrumd0(ω).

Finally, we clarify the familiar remark that UHF is astaticmean-field approximation. In
one sense this is trivial: the self-energies6̃σ (ω) (equation (3.8)) areω-independent at UHF
level, being given bỹ60

σ = − 1
2σU |µ|. But the correspondingsingleself-energy6(ω), defined

conventionally viaG(ω) = [ω + iη sgn(ω) −1(ω) − 6(ω)]−1, is given from equation (3.7)
by

6HF(ω) = g(ω)( 1
2U |µ|)2 (4.14)

with g(ω) the non-interacting Green function, equation (2.3). Thus, even at UHF level,6(ω)

is ω-dependent. For r > 1 in particular, the leading low-ω behaviour ofg(ω) is given from
equations (2.3), (2.10) byg(ω) ∼ q/(ω+iη sgn(ω)). Hence, from equation (4.13), the leading
low-ω behaviour of6HF(ω) asU → 0 is given by

6HF(ω)

ω→0
U→0∼ U2q3

4

1

ω + iη sgn(ω)
: r > 1. (4.15)

And simple though it is, this result is not trivial: it recovers exactly the leading low-ω behaviour
of 6(ω) obtained [29] from second-order perturbation theory inU about the non-interacting
limit (which is applicable forr > 1 [29]).

4.2. Deficiencies

Its virtues notwithstanding, the limitations of UHF by itself are of course severe. If the self-
consistent mean-field local moment|µ| = 0, UHF reduces trivially to the non-interacting
limit; there is thus no hint of the low-energy Kondo scale symptomatic of ther > 0 SC phase
and evident in the generalized Kondo resonance appearing in the modified spectral function
A(ω) = |ω|rD(ω) [29]. But the acute deficiencies of the simple mean-field approximation are
already evident in the UHF phase boundary of figure 1. From finite-U NRG studies [21, 28] it
is known that the critical10U

r/U vanishes linearly inr asr → 0, i.e.10,c ∼ r orUc ∼ 1/r.
For r = 0 this recovers the well known fact that the normal Anderson model is a Fermi liquid
for any non-zero hybridization strength10 (or finiteU ), with a LM phase confined exclusively
to the atomic limit,10 = 0. This is not however captured by UHF, which instead produces a
critical10/U = 1/π for r = 0 (see figure 1) and thus a spurious transition between the SC
(or Fermi liquid) and LM phases at a finite coupling strength.

More generally, ther → 0 behaviour of the NRG phase boundary for the Anderson model
[21, 28] is indicative of that for the corresponding Kondo model as considered originally by
Withoff and Fradkin [22]; for since10/Uc ∝ r asr → 0, the Anderson model can here be
mapped onto a Kondo model [21, 28] via the usual Schrieffer–Wolff transformation [32], with
an exchange couplingJ ∝ V 2

ik/U . Thus, as found originally via poor man’s scaling for the
Kondo model itself [22], there exists an infrared unstable fixed point atJc ∝ r such that for
J > Jc (J < Jc) the ground state is SC (LM). Clearly, however, no vestige of this Kondo
physics is captured at UHF level.
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The manifest deficiencies of the simple mean-field approximation naturally stem from its
static character, and in particular from the complete omission of dynamical spin-flip scattering
processes illustrated schematically in figure 2. Upon addition of, say, a↓-spin electron to an
↑-spin occupied impurity, two subsequent processes may occur. (a) The added↓-spin may hop
off the site, leaving behind the original↑-spin. This is essentially elastic scattering; it is well
captured by UHF alone. (b) However, the↑-spin electron originally present may also hop off
the site, leaving behind a spin flip on the impurity, the energy cost for the spin flip being of the
order of the Kondo scale. This process, involving correlated electron motion and dynamical
coupling of single-particle excitations to low-energy spin fluctuations, is entirely absent at
UHF level. Inclusion of such, to which we now turn, is however essential to circumventall the
limitations of the static mean-field approach outlined above, and in particular to recover the
correct physics of the Kondo (or spin-fluctuation) regime. On the other hand one should not
abandon UHF entirely, but rather use it as a starting point for a dynamical many-body approach;
use of it in this fashion is, as we shall show, necessary to ensure a successful description of the
problem for allr > 0 and from weak- to strong-coupling interaction strengths,U .

(b) ‘spin-flip’

(a) ‘elastic’

Figure 2. A schematic diagram of scattering processes as discussed in text.

5. Dynamical self-energies

The interaction self-energies̃6σ(ω) consist, as in equation (3.8), of a static Fock contribution
(alone retained at mean-field level) plus the dynamical contribution6σ(ω) on which we now
focus. The most important class of diagrams contributing to the6σ(ω), and that we retain in
practice, is shown in figure 3(a); mean-field impurity propagators (given by equation (4.2))
are denoted by solid lines, and the impurity interactionU by a wavy line. The physical
content of figure 3(a) is clear: having, say, added aσ -spin electron to a−σ -spin occupied
impurity, the latter hops off the impurity, generating in consequence an on-site spin flip, before
returning again at a later time; and where all ladder interactions of the resultant particle–hole
pair—reflecting the created spin flip—are included. This class of diagrams thus captures the
dynamical spin-flip scattering mentioned above (figure 2(b)), and known e.g. from poor man’s
scaling [33] to be essential in describing the Kondo limit of the normalr = 0 Anderson model.
This is further evident from the equivalent recasting of6σ(ω) shown in figure 3(b), which
translates to

6↑(ω) = U2
∫ ∞
−∞

dω1

2π i
G↓(ω − ω1)5

−+(ω1) (5.1a)

6↓(ω) = U2
∫ ∞
−∞

dω1

2π i
G↑(ω − ω1)5

+−(ω1). (5.1b)
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Figure 3. (a) The class of diagrams for6σ (ω) retained in the present work. Mean-field impurity
propagators are denoted by solid lines, the on-site impurityU by a wavy line. (b) Equivalent
recasting, including ingoing/outgoing propagators, to illustrate the spin-flip scattering involved.
(c) The particle–hole ladder sum in transverse spin channel; for5−+, spins are reversed.

These embody dynamical coupling of single-particle excitations to low-energy spin
fluctuations, since the transverse spin polarization propagators5+−/5−+—given as in fig-
ure 3(c) by the ladder sum of repeated particle–hole interactions in the transverse spin channel—
contain as will be shown the low-energy spin-flip scales that are the essence ofboth the SC
and LM phases.

The transverse spin polarization propagators are given in turn by an RPA form

5(ω) =
05(ω)

1− U 05(ω)
(5.2)

with 05(ω) the bare polarization bubble (first diagram in figure 3(c)).05+−(ω) is given
explicitly by

05+−(ω) = i
∫ ∞
−∞

dω1

2π
G↓(ω1)G↑(ω1− ω) (5.3)

while 05−+(ω) follows by interchanging the spin labels,↑ ↔ ↓; and a simple change of
variables in equation (5.3) gives

05+−(ω) = 05−+(−ω) (5.4)

which naturally applies also to the full5+−(ω)/5−+(ω). Only one propagator, say05+−(ω),
need thus be considered explicitly; the other follows from it. Further, since the real/imaginary
parts of05+−(ω) are related by the Hilbert transform

05+−(ω) =
∫ ∞
−∞

dω1

π

Im 05+−(ω1) sgn(ω1)

ω1− ω − iη sgn(ω)
(5.5)
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we may focus on Im05+−(ω). From equation (5.3), separatingGσ (ω) = G+
σ (ω) + G−σ (ω) into

retarded/advanced components and using the Hilbert transform

G±σ (ω) =
∫ ∞
−∞

dω1
D0
σ (ω1)θ(±ω1)

ω − ω1± iη
(5.6)

this is given by

1

π
Im 05+−(ω) = θ(ω)

∫ |ω|
0

dω1 D
0
↓(ω1)D

0
↑(ω1− ω)

+ θ(−ω)
∫ 0

−|ω|
dω1 D

0
↓(ω1)D

0
↑(ω1− ω) > 0. (5.7)

Finally, note that equations (5.1) preserve—as they must—the particle–hole symmetry
6↓(ω) = −6↑(−ω) (equations (3.5), (3.8)); as follows usingG↑(ω) = −G↓(−ω) (equ-
ations (4.2), (3.4)) with equation (5.4) for the5s. In what follows we thus focus exclusively
on6↑(ω) which, using equation (5.4), may be written as

6↑(ω) = U2
∫ ∞
−∞

dω1

2π i
5+−(ω1)G↓(ω1 + ω) (5.8)

and which we now consider separately for both SC and LM phases.

5.1. SC state

We begin with a brief overview of our approach to the SC phase, and give further details below
and in section 6ff. As noted in section 3, equation (3.9) constitutes a necessary condition for
a SC state to arise forU > 0; we show below that it is also sufficient, and reduces to

6R
↑ (ω = 0) = 1

2
U |µ| (5.9)

(where6R
σ (ω) = Re6σ(ω)). If this equation is satisfied then the generalized pinning condition

symptomatic of a SC state, equation (2.16b), will be satisfied. And the core of our approach
to the SC state is to enforce equation (5.9)—which refers to a single frequency, the Fermi
levelω = 0—as a self-consistency condition. In practice, as for ther = 0 model considered
hitherto [30], this amounts to a self-consistent determination of the local moment,|µ|; for
equation (5.9) is of form

g(U ; x) = x (5.10)

whereg(U ; x) ≡ 6R
↑ (ω = 0) depends explicitly onU , and uponx = 1

2U |µ| (via the
dependence of the mean-field propagatorsGσ (ω) uponx). With a chosen approximation for
6↑(ω)—equation (5.8) in the present work—the modus operandi is clear: for givenr and a
chosenU , solve equations (5.9), (5.10) forx and hence|µ|; if a solution is possible one has
a SC state, and theU above which a solution is no longer possible gives the criticalUc(r)

for termination of the SC phase, i.e. the phase boundary between SC and LM states (on the
assumption, indeed found in practice (section 6), that solely LM states arise forU > Uc(r)).

An initial illustration of what results is seen in figure 4 where, forr = 0.2 (and the wide-
band limitD = ∞), we show the resultant spectral density of transverse spin excitations,
Im5+−(ω) versusω̃ = ω/11/(1−r)

0 , for Ũ = U/11/(1−r)
0 = 9, 10 and 13. The inset to figure 4

shows for comparison the corresponding Im05+−(ω) associated with the bare polarization
bubble, shown explicitly forŨ = 13 only (since those for the other̃Us differ insignificantly
from it). Two principal points should be noted. First, as one expects, Im05+−(ω) consists
simply of a high-energy Stoner band centred onω̃ ∼ Ũ |µ| ∼ 101. For Im5+−(ω) by contrast,
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Figure 4. Im5+−(ω) versusω̃ = ω/1
1/(1−r)
0 for r = 0.2 andŨ = U/1

1/(1−r)
0 = 9, 10 and

13 (right to left); there are no further spectral features outside range shown. The spin-flip scale
ω̃m (peak maximum) progressively diminishes upon increasingŨ , andω̃m → 0 as the SC/LM
transition is approached. Inset: the corresponding Im05+−(ω) for Ũ = 13, showing the high-
energy Stoner band. Note the very different scales in the two figures.

it is seen that the vast majority of the spectral weight has been transferred to a low-ω resonance
peaked at a characteristic spin-flip scaleω̃m that is at least three orders of magnitude smaller
in the examples shown: this is essentially the Kondo scale characteristic of the SC state; it will
be investigated in detail in the following sections. Second, upon increasingŨ in the SC phase,
ωm progressively diminishes, and vanishes at the criticalŨc(r) ('15.8)where the resonance in
Im5+−(ω) becomes an isolated pole atω = 0 precisely; as discussed below and in section 5.2,
the latter is the characteristic signature of the doubly degenerate local moment state.

We now return to considering6↑(ω), equation (5.8). In the SC phase,5+−(ω) obeys the
same Hilbert transform as05+−(ω), equation (5.5); using this, together with

G±σ (ω) = ∓
∫ ∞
−∞

dω1

2π i

Gσ (ω1)

ω − ω1± iη
(5.11)

equation (5.8) reduces to

6↑(ω) = U2
∫ ∞
−∞

dω1

π
Im5+−(ω)

[
θ(ω1)G−↓ (ω1 + ω) + θ(−ω1)G+

↓(ω1 + ω)
]
. (5.12)

Since ImG±σ (ω) = ∓πD0
σ (ω)θ(±ω) (see equation (5.6)), equation (5.12) yields

6↑(ω) = 6R
↑ (ω)− i sgn(ω)6I

↑(ω) (5.13a)

where

6I
↑(ω) = θ(−ω)U2

∫ |ω|
0

dω1 Im5+−(ω1)D
0
↓(ω1 + ω)

+ θ(ω)U2
∫ 0

−|ω|
dω1 Im5+−(ω1)D

0
↓(ω1 + ω). (5.13b)

Im5+−(ω) is given from equation (5.2) by

Im5+−(ω) = Im 05+−(ω)[
1− U Re05+−(ω)

]2
+
[
U Im 05+−(ω)

]2 (5.14)
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and is non-negative (as follows from equation (5.7)); so too isD0
σ (ω) (equation (4.3)). Hence

6I
↑(ω) > 0 as required by analyticity; and6R

↑ (ω)/6
I
↑(ω) are related by the Hilbert transform,

equation (2.7), withF = 6↑.
To obtain the low-ω behaviour of6I

↑(ω) from equation (5.13b), we require that forD0
↓(ω)

and Im5+−(ω). For the SC phase,U Re 05+−(ω = 0) < 1 (as discussed further below);
hence from equation (5.14), Im5+−(ω) ∝ Im 05+−(ω) asω→ 0, with Im 05+−(ω) given by
equation (5.7). In what follows we consider explicitly the case where|µ| > 0 self-consistently,
for three reasons:

(i) This is naturally the case relevant to strong-coupling (large-U ) behaviour for anyr > 0;
in particular to the SC/LM phase boundary (section 6), to the asymptotic behaviour of the
Kondo scale (section 6) and to the consequent universal scaling behaviour of single-particle
spectra in the SC phase (section 8).

(ii) The case where|µ| = 0 (self-consistently) differs only in detail from|µ| > 0; the main
conclusions reached below hold also for|µ| = 0.

(iii) We consider the case of|µ| = 0 in section 7.1, where we show in particular that asU → 0
our description of the SC phase is perturbatively exact to (and including) second order in
U about the non-interacting limit.

From equation (5.7), using equation (4.5) forD0
σ (ω), the low-ω asymptotic behaviour of

Im 05+−(ω) is

Im 05+−(ω)
ω→0∼

[
10

πx2

]2

B(r)|ω|1+2r (5.15)

whereB(r) = √π0(1 + r)/[21+2r0( 3
2 + r)]; hence

Im5+−(ω) ∝ |ω|1+2r : ω→ 0. (5.16)

The low-ω behaviour of6I
↑(ω) then follows from equation (5.13b), namely

(6̃I
↑(ω) =) 6I

↑(ω) ∝ |ω|2+3r : ω→ 0 (5.17)

with a prefactor independent of whetherω → 0+ or 0−; and from the Hilbert transform
equation (2.7),

6R
↑ (ω)

ω→0∼ 6R
↑ (ω = 0)− γω (5.18a)

with γ = −(∂6R
↑ (ω)/∂ω)ω=0 given by

γ =
∫ ∞
−∞

dω

π

6I
↑(ω)

ω2
> 0. (5.18b)

The full interaction self-energỹ6↑(ω) = 6̃R
↑ (ω) − i sgn(ω)6̃I

↑(ω) is given by6̃↑(ω) =
− 1

2U |µ| + 6↑(ω) (equation (3.8)), so the low-ω behaviour of6̃I
↑(ω) is again given by

equation (5.17); while if equation (5.9) is satisfied, the asymptotic behaviour of6̃R
↑ (ω) is

given from equation (5.18) by

6̃R
↑ (ω)

ω→0∼ −γω. (5.19)

Both 6̃R
↑ (ω) and6̃I

↑(ω) thus decay to zero asω → 0 more rapidly than1I/R ∼ |ω|r for any

r < 1. These are the requisite conditions upon6̃σ (ω) for a SC state to arise forU > 0, as
discussed in section 3. Hence,if the basic self-consistency equation (5.9) admits a solution,
this is a sufficient condition for a SC state.
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An important characteristic of the SC state follows directly from the above analysis,
namely that asω→ 0

6̃↑(ω) = 6̃↓(ω) = 6(ω) : ω→ 0. (5.20)

That6̃↑(ω) = 6̃↓(ω) to leading order follows directly from equations (5.17), (5.19) using the
basic symmetry equation (3.5); from this, using equations (3.2), (3.3) forG(ω) together with
the definition equation (2.12) of the single self-energy6(ω), it follows that6̃σ (ω) = 6(ω)
asω → 0. Equations (5.17), (5.19) thus give the low-ω behaviour of6(ω), and encompass
as a special case the Fermi liquid behaviour characteristic of the normal (r = 0) Anderson
model, namely6I(ω) ∝ ω2. As will be shown in section 5.2, the above behaviour is in marked
contrast to that characteristic of the LM phase.

5.1.1. SC state: stability condition.Before turning to the self-energy in the LM phase (sec-
tion 5.2), and to provide continuity to that discussion, we comment on the evolution in the
SC phase of the local moment|µ| determined self-consistently from equation (5.9); and its
associated implications for the low-energy spin-flip scaleωm illustrated in figure 4.

From the Hilbert transform equation (5.5) appropriate to5+−(ω) in the SC phase, it
follows that

Re5+−(ω = 0) =
∫ ∞
−∞

dω

π

Im5+−(ω)
|ω| > 0 (5.21)

which is positive definite since Im5+−(ω) > 0. But5+−(ω) is given by equation (5.2)
whence, since Im05+−(ω = 0) = 0,

Re5+−(ω = 0) = Re05+−(ω = 0)/(1− U Re05+−(ω = 0)).

For the stability condition equation (5.21) to be satisfied, 0< URe 05+−(ω = 0) < 1
is thus required. And an explicit expression for Re05+−(ω = 0) is readily deduced
from equation (5.3), using equation (5.6) together with the identityG↑(ω) − G↓(ω) =
−U |µ|G↑(ω)G↓(ω); namely

U Re05+−(ω = 0) = 1

|µ|
∫ 0

−∞
dω

[
D0
↑(ω)−D0

↓(ω)
]

(5.22a)

= f (x)

|µ| (5.22b)

wheref (x) (x = 1
2U |µ|) is thus defined, and has been introduced in section 4.1. For stability,

|µ| > f (x) is thus required; and sincef (x) may be shown to be a monotonically increasing
function ofx = 1

2U |µ|, saturating to 1 asx → ∞ (as is physically obvious), the condition
|µ| = 2x/U > f (x) thus amounts to

|µ| > |µ0| (5.23a)

for any givenU in the SC phase; where|µ0| is given by

|µ0| = f ( 1
2U |µ0|) (5.23b)

and from equation (4.8) is simply the mean-field (UHF) local moment (denoted from now on
by |µ0|).

Hence, for the SC state stability condition equation (5.21) to be satisfied, the local
moment|µ| determined self-consistently via equation (5.9) must exceed the corresponding
UHF moment|µ0|. This is correctly found in practice upon solution of equation (5.9) using
equation (5.8) for6↑(ω) (as shown explicitly in figure 6 below); and is reflected in turn in the
spectral density of transverse spin excitations, Im5+−(ω), which (see figure 4) is characterized
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by a strong resonance centred on the low-energy spin-flip scaleωm > 0. But on increasingU
in the SC phase towards the criticalUc(r) above which solution to equation (5.9) is no longer
possible, the self-consistently determined|µ| approaches|µ0| continuously from above and
ωm→ 0 (figures 4, 6). AtU = Uc(r) precisely,|µ| = |µ0| andωm = 0. This is the transition
point: hereUc Re 05+−(ω = 0) = 1, and the resonance in Im5+−(ω) becomes an isolated
pole atω = 0. The latter is the natural signature of the LM phase, since for a doubly degenerate
LM state with finite weight on the impurity there is no energy cost to flip a spin; it persists
through the LM phase, where|µ| = |µ0|, and to consideration of which we now turn.

5.2. LM state

We begin by stating the result for5+−(ω) in the LM phase. It consists of a continuum contrib-
ution, denotedS5+−(ω), and anω = 0 pole with poleweightQ > 0; specifically,

5+−(ω) = − Q

ω + iη
+ S5+−(ω) (5.24a)

with

Q =
[
U2

(
∂ Re05+−(ω)

∂ω

)
ω=0

]−1

> 0. (5.24b)

Im S5+−(ω) is given by equation (5.14), and the real/imaginary parts ofS5+−(ω) are again
related by the Hilbert transform equation (5.5).

The pole contribution arises from equation (5.2) for5+−(ω) because (i)U Re05+−(ω =
0) = 1 in the LM phase (|µ| = |µ0|), and (ii) the low-ω behaviour of Re05+−(ω) is linear
in ω:

Re05+−(ω)
ω→0∼ 1

U
+ ω

(
∂ Re05+−(ω)

∂ω

)
ω=0

(5.25)

where

π(∂ Re05+−(ω)/∂ω)ω=0 =
∫ ∞
−∞

dω Im 05+−(ω) sgn(ω)/ω2

is readily shown to be positive. The low-ω behaviour of Im05+−(ω) is again given precisely by
equation (5.15), and for anyr > 0 decays to zero asω→ 0 more rapidly thanω. Hence, from
equation (5.2), theω→ 0 behaviour of5+−(ω) is−Q/ω with Q given by equation (5.24b);
theδ-function part of which pole is obtained by an analytical continuationω→ ω + iη, which
is unique sinceQ > 0 and Im5+−(ω) > 0 necessarily. Equation (5.24) thus results.

Using equation (5.24) in equation (5.8) for6↑(ω), together with equation (5.11), gives
the basic form for6↑(ω) in the LM phase:

6↑(ω) = QU2G−↓ (ω) + S6↑(ω). (5.26)

The first term, arising from the pole contribution to5+−(ω), controls the low-ω asymp-
totics of 6↑(ω) as shown below. The second,S6↑(ω), is given by equation (5.8) with
5+− → S5+−, and by precisely the same argument as was used in section 5.1 is given
by equation (5.12) with Im5+− → Im S5+−; hence, as in equation (5.13),S6↑(ω) =
S6R
↑ (ω) − i sgn(ω)S6I

↑(ω) with S6I
↑(ω) > 0 given by equation (5.13b). And since

G−↓ (ω) = ReG−↓ (ω) − i sgn(ω)πD0
↓(ω)θ(−ω) it follows that6↑(ω) in its entirety is given

by equation (5.13a); with 6I
↑(ω) > 0 as required by analyticity, and6R

↑/6
I
↑ related by the

Hilbert transform equation (2.7).6I
↑(ω) is given explicitly by

(6̃I
↑(ω) =) 6I

↑(ω) = πQU2D0
↓(ω)θ(−ω) + S6I

↑(ω) (5.27)
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the low-ω asymptotics of which we now consider.
The ω → 0 behaviour ofS6I

↑(ω) is obtained from equation (5.13b) in parallel to
the corresponding analysis of section 5.1. ImS5+−(ω) is given by equation (5.14), with
Im 05+−(ω) given by equation (5.15) and Re05+−(ω) given by equation (5.25); and since
U Re05+−(ω = 0) = 1, equation (5.14) thus gives ImS5+−(ω) ∝ |ω|2r−1 asω→ 0. Hence,
usingD0

↓(ω) ∼ |ω|r asω→ 0, equation (5.13b) yields

S6I
↑(ω) ∝ |ω|3r ω→ 0. (5.28)

But sinceD0
↓(ω) ∝ |ω|r asω→ 0 (equation (4.5)), it is the first term in equation (5.27) that

controls the low-ω behaviour of6I
↑(ω) for any r > 0 (and it is only forr > 0 that a LM

state arises, as will be shown in section 6). It can moreover be shown that the poleweight
Q (equation (5.24b)) is given simply byQ = |µ0|2; hence, using equation (4.5) theω → 0
behaviour of6I

↑(ω) = 6̃I
↑(ω) in the LM phase is

6I
↑(ω)

ω→0∼ 410|ω|rθ(−ω). (5.29)

6I
↓(ω) = 6I

↑(−ω) follows directly by symmetry and we note that in contrast to the case for
the SC phase (equation (5.20)),6↑(ω) and6↓(ω) do not therefore coincide to leading order
asω→ 0, the physical significance of which will be discussed in section 8.

The corresponding real part6R
↑ (ω), and hencẽ6R

↑ (ω) = − 1
2U |µ0| +6R

↑ (ω), follows by
Hilbert transformation. Here we simply note that6R

↑ (ω = 0) < 1
2U |µ0| is found throughout

the LM phase whence, in contrast to the case for the SC phase (equation (5.9)),6̃R
↑ (ω = 0) < 0.

This, together with equation (5.29), enables the low-ω behaviour of the full single-particle
spectrumD(ω) = −π−1 sgn(ω) ImG(ω) to be obtained; for from equations (3.2), (3.3),
D(ω) = 1

2[D↑(ω) +D↓(ω)] with Dσ(ω) given asω→ 0 by

Dσ(ω)
ω→0∼

[
1I(ω) +6I

σ (ω)
]

π
[
6̃R
σ (ω = 0)

]2 . (5.30a)

And since6R
↓ (ω = 0) = −6R

↑ (ω = 0), it follows directly using equation (5.29) that

D(ω)
ω→0∼ 310

π
[
6̃R
↑ (ω = 0)

]2 |ω|r . (5.30b)

The characteristic low-ω spectral signature of the LM phase found in NRG calculations
[28],D(ω) ∝ |ω|r , is thus recovered; and we add that equation (5.30b) holds for the LM state
regardless of whetherr ≶ 1. For the particular case ofr > 1 however, equation (5.30b) is
readily shown to be asymptotically exact asU → 0. Here,6̃R

↑ (0) is dominated by the Fock
contribution of− 1

2U |µ0|; and as discussed in section 4 (equation (4.13) and the appendix),
|µ0| → q asU → 0, with q (equation (2.10b)) the weight of theω = 0 pole in the non-
interacting single-particle spectrumd0(ω). Hence asU → 0:

D(ω) =ω→0∼ 12

π

10

(Uq)2
|ω|r : U → 0, r > 1. (5.31)

This is precisely the result obtained by us hitherto (equation (5.12) of [29]) using straight
second-order perturbation theory inU about the non-interacting limit, which is itself applicable
for r > 1 (but not for1

2 < r < 1 [29]). Note that this result is not captured correctly at pure
mean-field level alone which, from equation (4.5) with|µ0| = q, differs by a factor of 3 (the
presence of which reflects the fact that equation (5.29) for6I

↑(ω) asω → 0 is independent
of U ). That equation (5.31) is correctly recovered as a limiting case of the present theory is
thus a non-trivial consequence of the local moment approach.



A local moment approach to magnetic impurities 1005

Finally, the low-ω behaviour in the LM phase of the conventional single self-energy
6(ω)—defined by equation (2.12)—may also be deduced from the above asymptotics. We
consider explicitlyr < 1 (the caser > 1 will be discussed in section 7.1). Consider the
Hilbert transform equation (2.7) forF(ω) = FR(ω)− i sgn(ω)FI(ω). If theω→ 0 behaviour
of FI(ω) is

FI(ω)
ω→0∼ α|ω|λ (5.32a)

with −1< λ < 1, the low-ω behaviour ofFR(ω) is readily shown to be

FR(ω)
ω→0∼ −sgn(ω) tan

(
π

2
λ

)
FI(ω). (5.32b)

With FI(ω) ≡ πD(ω) given asω → 0 by equation (5.30b), ReG(ω) ≡ FR(ω) thus follows
directly; and from equation (2.12),6(ω) = ω+iη sgn(ω)−1(ω)−G−1(ω) is in consequence
given asymptotically by

6R(ω)
ω→0∼ sgn(ω) tan

(
π

2
r

)
6I(ω) (5.33a)

with

6I(ω)
ω→0∼

[
6̃R
↑ (ω = 0)

]2
310

cos2
(
π

2
r

)
|ω|−r : r < 1 (5.33b)

This divergent behaviour of6(ω) asω → 0 in the LM phase—which as just seen is a
direct consequence ofD(ω) ∝ |ω|r asω → 0—is in marked contrast both to that of6σ(ω)
(equation (5.29)); and to the behaviour of6(ω) in the SC phase (equations (5.17), (5.19),
(5.20)) where, as befits a generalized Fermi liquid state,6I(ω) vanishes at the Fermi level,
ω = 0.

6. Statics

We now consider the ramifications of the local moment approach (LMA) developed in the
preceding sections, beginning with ‘statics’; dynamics, in the form of single-particle excitation
spectra, will be investigated in sections 7 and 8. Specifically, we consider here:

(i) The phase boundaries between SC and LM states, including their predicted scaling be-
haviour (section 6.3) and quantitative comparison with NRG results [21, 28] (section 6.4).
As mentioned in section 4, the problem is characterized generally by two dimensionless
material parameters: the reduced interaction strength,Ũ = U/11/(1−r)

0 , and bandwidth
D̃ = D/11/(1−r)

0 ; or, equivalently, byŨ andU/D. We seek the critical̃Uc(r) versusr
phase boundaries, as a function ofU/D.

(ii) The evolution, and critical behaviour, of the central low-energy spin-flip (or Kondo) scale,
ωm, that is symptomatic of the SC state and was discussed briefly in section 5.1 (see fig-
ure 4); this is considered in section 6.1.

(iii) The relationship (section 6.3) between the soft-gap Anderson model and the correspond-
ing Kondo model in the strong-coupling (large-U ) regime [21, 28].

Particular attention will be given throughout to the behaviour of physical properties at lowr,
which is of evident importance in connecting to the ‘normal’ (r = 0) Anderson model; and
for which the salient results, of which the most important are asymptotically exact, can be
extracted analytically.
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To motivate our subsequent discussion, we begin with a phase diagram obtained from the
LMA as detailed in section 5.1, via the limits of solution to equation (5.9) appropriate to the
U > 0 SC state. Figure 5 shows the resultant critical10U

r/U (=Ũ r−1) versusr, obtained
strictly for the wide-band limitD = ∞ (but, as shown in section 6.3, coincident in practice
with that forU/D . 0.1); the inset shows the low-r < 0.1 behaviour on an expanded scale,
and the main figure includes for comparison the static mean-field (UHF) result obtained in
section 4.1 (figure 1).

0 0.25 0.5 0.75 1

r

0

0.25

0.5

∆ 0U
r /U

0.00 0.05 0.10
0.00

0.05

SC

LM

Figure 5. The LMA phase diagram,(10U
r/U)c = Ũ r−1

c versusr (wide-band limit); forr > 1
2 ,

solely LM states occur for allU > 0. The mean-field phase boundary is shown for comparison
(dashed line). Inset:r < 0.1 behaviour on an expanded scale including ther → 0 Kondo asymptote
(dotted line) ofπr/8 (see section 6.1, equation (6.10)).

As seen from figure 5, the small-r behaviour of the phase boundary differs radically from
that of UHF, which yields a spurious SC/LM transition even forr = 0. The LMA phase
boundary, by contrast, vanishes linearly inr asr → 0, as found in NRG studies of both the
Anderson [21, 28] and Kondo [22, 27] models; the precise form ofŨc(r) asr → 0 will be
established in section 6.1. For the normalr = 0 Anderson model in particular, the LMA
correctly recovers(10/U)c = 0: the LM phase is here confined entirely to the atomic limit
10 = 0, and for all10 > 0 the system is a normal Fermi liquid with a strong-coupling Kondo
scale whose asymptotics within the LMA will be obtained analytically in section 6.1 from the
limit r → 0, and shown to coincide with that arising from scaling and the Betheansatz. Upon
increasingr from zero the critical10U

r/U departs quite rapidly from linearity, turns upward
and then terminates atr = 1

2. The latter behaviour is different from that arising at mean-field
level (where the boundary curve diverges asr → 1

2−; figure 1), but has been reported in an
NRG study of the Kondo model [27]; we return to this issue when making detailed comparison
with NRG results in section 6.4.

One small but important point should be noted regarding the LMA phase boundaries: the
sameŨc(r) is correctly obtained whether one approaches the boundary from the SC phase
(Ũ < Ũc(r)) or the LM phase (̃U > Ũc(r)). Recall the statement above thatŨc(r) is obtained
from the limit of solutions to equation (5.9)—̃6R

↑ (ω = 0) = 0—appropriate to theU > 0

SC state; such that for̃U > Ũc(r), 6̃R
↑ (0) = 0 cannot be satisfied self-consistently. As

mentioned in section 5.2, we find by contrast that6̃R
↑ (0) < 0 throughout the LM phase. For

the sameŨc(r) to arise coming from the LM phase,Ũ > Ũc(r), thus requires̃6R
↑ (0)→ 0− as
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Ũ → Ũc(r)+ (on the assumption of continuity). This is indeed precisely as found in practice.
The final qualitative feature of the phase diagram shown in figure 5 is that forr > 1

2
solely LM states occur for allU > 0, as is indeed found from NRG studies [21, 28] and seen
already at mean-field level (figure 1). Here we find, consistently, that6̃R

↑ (ω = 0) < 0 for all

finite Ũ , and vanishes only as̃U → 0 (where the interaction self-energy is of course zero by
construction).

6.1. Strong-coupling asymptotics

We now consider the asymptotic behaviour of the SC phase in the spin-fluctuation regime of
strong coupling (meaning largeU ). From the phase diagram figure 5, this formally entails
consideration of the important limiting behaviourr → 0 (whereŨc(r) → ∞), since charge
fluctuations can strictly be neglected only asŨ →∞; although in practice the results obtained
below naturally hold over a finite-r range. Our aim is to obtain the criticalŨc(r) and, relatedly,
the behaviour of the low-energy spin-flip or Kondo scaleωm(r) asŨ → Ũc(r)− from the SC
phase. No restriction is imposed on the bandwidth,D, and the impurity levelεi = −U/2 may
lie within or outside the band; to encompass which we defineλ, used in the following, by

λ = min

[
D,

U

2

]
. (6.1)

The key to extracting the strong-coupling asymptotics naturally lies in6↑(ω), given for
the SC phase by equation (5.12); and in particular in6R

↑ (ω = 0), whose large-U form is
readily deduced from two properties of the transverse spin polarization propagator Im5+−(ω)
(itself illustrated in figure 4). First, that in strong coupling the spectral weight of Im5+−(ω) is
confined entirely to frequenciesω > 0 (as already evident in figure 4), and in consequence the
first term on the right-hand side of equation (5.12) for6R

↑ (ω = 0) is dominant in determining
its asymptotics. Specifically one finds∫ ∞

0

dω

π
Im5+−(ω)→ 1 (6.2)

in strong coupling, which behaviour reflects physically the saturation of the local moment,
|µ| → 1: it is straightforward to show, and physically rather obvious, that the moment
saturates for1I(ω = λ)/|εi | � 1; i.e.

U

2
� 10λ

r . (6.3)

Second, as illustrated in figure 4, the strong resonance in Im5+−(ω) occurs on the low-energy
spin-flip scale,ωm, that diminishes rapidly with increasing̃U and vanishes as̃U → Ũc(r)−
from the SC phase. Im5+−(ω) is thus in practice non-zero only on the scale ofωm; and on
scales of this order ReG−↓ (ω) is a slowly varying function of frequency. Hence, the strong-
coupling behaviour of6R

↑ (ω = 0) is given asymptotically from equation (5.12) by

6R
↓ (ω = 0) ∼ U2 ReG−↓ (ωm)

∫ ∞
0

dω1

π
Im5+−(ω1) = U2 ReG−↓ (ωm). (6.4)

The U -dependence ofωm(r)—and in consequence the criticalUc(r)—can now be
determined from equation (5.9), which (as discussed in section 5.1) ensures that the generalized
spectral pinning condition characteristic of the SC state, equation (2.16), is satisfied; for in
strong coupling, where|µ| → 1, equation (5.9) reduces using equation (6.4) to

U2 ReG−↓ (ωm) = 1

2
U. (6.5)
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This can be solved forωm(r) once ReG−↓ (ω) is known, and to which we now turn.
ReG−↓ (ω) is given from equation (5.6) by the one-sided Hilbert transform

ReG−↓ (ω) =
∫ 0

−∞
dω1 D

0
↓(ω1)P

(
1

ω − ω1

)
(6.6)

whoseω → 0 behaviour is dominated by that ofD0
↓(ω1) asω1 → 0, given generally by

D0
↓(ω1) ∼ (10/πx

2)|ω1|r (equation (4.5)) withx = 1
2U |µ|; and from the latter alone it can

be shown that the asymptotic behaviour of Re[G−↓ (ω)− G−↓ (0)] is given exactly forr < 1 by

Re[G−↓ (ω)− G−↓ (0)]
ω→0+∼ −10

x2

1

sin (πr)
|ω|r + O(|ω|) (6.7)

although this by itself does not give ReG−↓ (ω = 0). An approximation to ReG−↓ (ω) that
correctly captures this asymptotic behaviour is

ReG−↓ (ω)
ω→0∼ 10

πx2

∫ 0

−λ
dω1 |ω1|rP

(
1

ω − ω1

)
(6.8a)

where we have introduced a high-energy cut-off of orderλ = min[D,U/2]. We emphasize
that the specific cut-off used is wholly inessential to the following arguments: the important
point is that the prefactor to the integral is precisely10/πx

2. Evaluation of equation (6.8a)
for ω > 0 gives

ReG−↓ (ω)
ω→0∼ 10

πx2

(
λr

r
− π

sin(πr)
|ω|r

)
+ O(|ω|/λ) (6.8b)

use of which in equation (6.5), withx ≡ 1
2U in strong coupling (|µ| → 1), yields

U = 810

π

(
λr

r
− π

sin(πr)
ωrm

)
. (6.9)

The criticalUc(r), whereωm vanishes, follows immediately from(
10λ

r

U

)
c

= πr

8
(6.10a)

(and of course holds asymptotically asr → 0 whereUc(r)→∞); equivalently, in the reduced
unitsŨ = U/11/(1−r)

0 andD̃ = D/11/(1−r)
0 ,(

[min(D̃, Ũ/2)]r

Ũ

)
c

= πr

8
(6.10b)

yielding in either case

Ũc(r) ∼ 8

πr
(6.11)

as r → 0. The behaviour equation (6.10) is evident in figure 5 (inset) appropriate to the
wide-band limit, where the critical10U

r/U = Ũ r−1 determined by full numerical solution
of equation (5.9) is compared to the small-r resultπr/8. The latter is indeed seen to be
asymptotically approached asr → 0, which behaviour is reached in practice forr . 0.02 (a
feature that we compare to NRG calculations in section 6.4); we also add in passing that the
asymptotic region of linearity inr widens upon introduction of a finite bandwidthD, as will
be shown in section 6.3.
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ForU < Uc(r) in the SC phase, the spin-flip or Kondo scaleωm likewise follows directly
from equation (6.9), being given asr → 0 by

ωm(r)
r→0∼ λ

[
1− U

Uc(r)

]1/r

(6.12a)

= λ
[
1− r πU

810λr

]1/r

(6.12b)

and vanishing asU → Uc(r)− with the characteristic exponent 1/r for r > 0; while the limit
of r = 0 yields

ωm(r = 0) = min

[
D,

U

2

]
exp

(
− πU

810

)
(6.13)

which is the Kondo scale characteristic of the normal Anderson model and is exponentially
small in strong coupling. The prefactor,λ = min[D,U/2], merely reflects the high-energy
cut-off used in equation (6.8a); but the exponent of−πU/810 is exact, agreeing precisely with
the result obtained from the Betheansatz[34] for the wide-band limit of ther = 0 Anderson
model and, more generally, with poor man’s scaling [33] (see e.g. [2]). Note moreover that
recovery of this exponent hinges on the asymptotic validity of equation (6.10) for the phase
boundary asr → 0, which we likewise believe to be exact.

Finally, while the results above are strictly valid asr → 0, the exponent of 1/r for the
vanishing of the Kondo scaleωm(r) asU → Uc(r)− is found to hold generally within the
present LMA. Figure 6 shows the numerically determinedω̃m = ωm/1

1/(1−r)
0 versusŨ for

r = 0.2 (in the wide-band limit); and as̃U → Ũc− ' 15.8, careful numerical analysis shows
ωm ∼ [1− Ũ/Ũc]5. ForŨ > Ũc in the doubly degenerate LM phase,ωm = 0 (as indicated in
figure 6); but is nonetheless ‘present’, giving rise to theω = 0 pole in Im5+−(ω) throughout
the LM phase (section 5.2) and in consequence to the leading termQU2G−↓ (ω) contributing
to the LM self-energy6↑(ω), equation (5.26) (whose existence is in turn responsible for
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U
~
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Figure 6. Forr = 0.2, the spin-flip/Kondo scalẽωm = ωm/1
1/(1−r)
0 versusŨ = U/11/(1−r)

0 (left-
hand scale) in the vicinity of the SC/LM transition; and the local moment|µ| versusŨ (right-hand
scale, solid line), compared to the mean field|µ0| (dotted line). AsŨ → Ũc−, ω̃m ∼ [1−Ũ/Ũc]5;
andω̃m = 0 in the LM phase,̃U > Ũc.
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e.g. the asymptotically exact result equation (5.31)). Figure 6 also shows the evolution of the
self-consistently determined local moment|µ| asŨ is increased towards and throughŨc(r),
together with its mean-field counterpart|µ0|, and illustrates the discussion of section 5.1.1;
specifically that|µ| > |µ0| in the SC phase, with|µ| → |µ0|+ asŨ → Ũc−.

6.2. Connection to the Kondo model

We comment briefly on the connections to the soft-gap Kondo model, which itself has been
studied extensively by NRG [26, 27], poor man’s scaling [22] and large-N mean-field methods
[22]; and to which the results of the previous section are clearly related: equation (6.3) is just the
condition for applicability of the Schrieffer–Wolff transformation [32] mapping the Anderson
to the Kondo model; and from equation (6.10a) is manifestly satisfied forr � 1 as the SC/LM
phase boundary is approached.

The Kondo HamiltonianĤK = Ĥhost + Ĥs−d consists of the host band contribution (equ-
ation (2.1)), with spectral density

ρhost(ω) = C|ω|rθ(D − |ω|) (6.14)

and the s–d interaction

Ĥs−d = 1

2
J
∑
k,k′

[
c+
k↑ck′↓Ŝ

−
i + c+

k↓ck′↑Ŝ
+
i + (c+

k↑ck′↑ − c+
k↓ck′↓)Ŝiz

]
with an exchange coupling constant,J , given from the Schrieffer–Wolff transformation in the
particle–hole-symmetric case byJ = 8V 2/U (where a constantVik = V is taken). From
equations (2.5), (2.6) and (6.14),V 2 is related to the hybridization parameter of the Anderson
model by10 = πV 2C, whence

J = 8

πC

10

U
. (6.15)

The critical value of10/U at the SC/LM phase boundary is however given within the
LMA by equation (6.10a) asr → 0; hence asr → 0 the criticalJc(r) in the Kondo model is

Jc(r)
r→0∼ r

Cλr
(6.16)

with λ = min[D,U/2]. This is precisely the result for the Kondo model obtained by Withoff
and Fradkin [22] from poor man’s scaling withD finite, and henceλ = D. Likewise
equation (6.12b), which withλ = D may be cast asωm(r) = D(1− Jc(r)/J )

1/r , recovers
precisely the Kondo scale obtained by Withoff and Fradkin via a large-N mean-field treatment
[22] (and denoted therein byT0). The LMA for the soft-gap Anderson model thus recovers
precisely the correct asymptotics of the corresponding Kondo model in the limitr → 0.

6.3. Phase boundaries: scaling

We return now to the Anderson model for arbitraryr, to discuss the scaling characteristics of
the phase boundaries predicted by the LMA, and illustrated in figures 7 and 8. Figure 7 shows
the critical10U

r/U (=Ũ r−1) versusr curves for five values ofU/D: 10−3, 10−2, 1, 10 and
100; from which is seen that forU/D � 1 (and in practice forU/D . 0.1–1) the phase
boundaries collapse to a common curve, namely the wide-band limit shown in figure 5. By
contrast, and for the sameU/D values, figure 8 shows the resultant critical10D

r/U (=D̃r/Ũ)

versusr curves; from which it is evident that forU/D � 1 (and in practiceU/D & 10)
common scaling of the phase boundaries again arises. Thus, although the model contains
two independent parameters—namelyŨ = U/11/(1−r)

0 andU/D—it is clear that the phase
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Figure 7. LMA phase boundaries(10U
r/U)c versusr for (top to bottom)U/D = 100, 10, 1,

10−2 and 10−3; for U/D � 1 common scaling occurs (bold line), as discussed in the text.
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Figure 8. LMA phase boundaries(10D
r/U)c versusr, for (top to bottom)U/D = 10−3, 10−2,

1, 10 and 100; forU/D � 1 common scaling occurs (bold line), as discussed in the text. Inset:
the limiting U/D � 1 phase boundary on an expanded scale, compared to ther → 0 Kondo
asymptote (dashed line) ofπr/8.

boundaries exhibit one-parameter scaling for the two distinct regimesU/D � 1 and�1,
according to whether the impurity level|εi | = U/2 lies respectively well within or outside the
band.

The behaviour found generally above is in fact suggested by the asymptotic low-r result
of section 6.1, namely(10λ

r/U)c = πr/8 with λ = min[D,U/2]. Moreover, the scaling
illustrated in figure 7 forU � D has been observed in NRG calculations by Gonzalez-Buxton
and Ingersent [21], who find excellent scaling forU/D = 0.2 and 0.02 (see figure 20 of [21],
where for the symmetric model the quantityρ0Jc there plotted is precisely(8/π)(10λ

r/U)c
with λ = U/2). These authors have also given an argument, based upon poor man’s scaling
for the soft-gap Anderson model [23], as to why(10U

r/U)c ≡ Ũ r−1
c should be universal;

although we note that a simpler argument explains this: as the bandwidthD → ∞—which
is possible forr < 1 (section 2.1)—this scale in effect drops out of the problem, which thus
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depends solely on the dimensionless ratioŨ = U/11/(1−r)
0 .

ForU/D � 1 by contrast, both̃U andU/D are relevant in determining the scaling curve,
but occur solely in the combination10D

r/U (=Ũ r−1(D/U)r). This too is readily understood,
since for |εi | = U/2 � D the impurity–host coupling is controlled by the hybridization
1I(D) = 10D

r which, together withU , sets the natural energy scales upon whose ratio the
phase boundary thus depends (NRG calculations for the regimeU/D � 1 have not to our
knowledge hitherto been reported, and will be given in a subsequent publication [31]). We
emphasize however that the limitU/D →∞ doesnot imply the total suppression of charge
fluctuations close to the limiting SC/LM phase boundary of figure 8, since10D

r/U ≡ 8(r)
remains in generalfinite at the transition. Charge fluctuations only become negligible as
r → 0, where8(r) ∼ r and the condition equation (6.3) for applicability of the Schrieffer–
Wolff transformation holds. For this reason the phase boundary of the Anderson model, even
asU/D → ∞, differs from that for the Kondo model save forr → 0. Nonetheless, as one
expects physically forU/D � 1, the critical10D

r/U remains closer to its ‘Kondo asymptote’
of πr/8 over a widerr-range than arises forU/D � 1 (figure 5). This is seen in figure 8
where the Kondo asymptote is reached in practice forr . 0.1, and departure from it is modest
for all r < 1

2.

6.4. Comparison to NRG

We now compare quantitatively the LMA phase boundary with NRG results previously reported
for the regimeU/D � 1 by Bulla, Pruschke and Hewson (BPH) [28] and Gonzalez-Buxton
and Ingersent (G-BI) [21]. BPH have obtained the phase boundary forU/D = 0.001, and
G-BI for U/D = 0.02 and 0.2. These values ofU/D are sufficiently small that one is in the
universal scaling regime where (see figure 7) the critical10U

r/U is independent ofU/D;
as noted above, this is demonstrated explicitly in figure 20 of [21]. The NRG results for
(10U

r/U)c versusr are shown in figure 9, together with the corresponding LMA result (for
the wide-band limitU/D→ 0, as given in figure 5); the inset shows the data forr < 0.3 on an
expanded scale, and includes ther → 0 Kondo asymptote ofπr/8. It is evident that, except
for the important regimer → 0, the two sets of NRG data do not coincide, although they
should: with increasingr the BPH results lie increasingly above those of G-BI. We believe
however that the former results progressively overestimate the phase boundary with increasing
r, support for which will be given in a subsequent paper [31].

From figure 9 it is seen that the LMA phase boundary is in excellent agreement with the
G-BI results forr . 0.3, where the NRG points essentially lie on the LMA curve. Further,
as discussed in section 6.1, the latter coincides in practice with the Kondo asymptote ofπr/8
for r . 0.02; and this concurs also with the two lowestr > 0 points from BPH,r = 0.01 and
0.02 (see figure 9 inset).

For r & 0.3, the NRG phase boundaries(10U
r/U)c = Ũ r−1

c increase more rapidly than
their LMA counterpart. That such a deviation should occur is not in itself surprising, since
our specific LMA is of course approximate and, although charge fluctuations are obviously
included, it seeks primarily to capture the strong-coupling physics of the spin-fluctuation
regime that is asymptotically dominant for smallr. As r → 1

2−, the LMA (10U
r/U)c tends

to a constant value (of∼0.42; see also figure 5); whereas BPH and G-BI report a divergence
in the NRG phase boundary—as indeed is found at mean-field level where(10U

r/U)c is
known analytically (section 4.1) to diverge as(1− 2r)−1/2 asr → 1

2−, and which is also
included in figure 9. For reasons that are evident from the results assembled in figure 9, we do
not however believe that the NRG data themselves warrant such a conclusion: to distinguish
numerically between a weakly divergent phase boundary and a finite limit—the latter of which
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Figure 9. ForU/D � 1, comparison of the LMA phase boundary(10U
r/U)c versusr (solid

line) with NRG results: G-BI [21] (circles), BPH [28] (squares); lines connecting NRG points are
a guide to the eye only. The mean-field boundary, diverging asr → 1

2−, is shown for comparison
(dashed line). Inset: results forr < 0.3 on an expanded scale, including the Kondo asymptote
πr/8 (dashed line).

has been reported in NRG studies of both the symmetric soft-gap Kondo model [27] and the
corresponding two-channel Kondo model [21]—is a delicate matter. We add however that this
remark does not presume a definite answer to the question, for it is possible that the present
LMA may not handle adequately the approach tor = 1

2, which is without doubt a subtle limit
worthy of further study.

7. Dynamics: single-particle spectra

The ability to describe successfully single-particle spectra constitutes a stringent test of any
approximate many-body theory. This is true even for the normalr = 0 Anderson model, where
as mentioned in section 1 current theories have had somewhat limited success; and which is
but a limit of the naturally more subtle generic case ofr > 0. In this section we consider
illustrative impurity spectra,D(ω), arising from the present LMA, on all energy scales and
for both SC and LM states. Low-frequency spectral characteristics in the SC phase, and in
particular the predicted scaling thereof as the SC/LM phase boundary is approached, will be
investigated in section 8.

For a representativer < 1
2, we begin with an overview of spectral evolution upon

decreasingŨ = U/11/(1−r)
0 through the LM phase, into the SC state and towards the weak-

coupling limit; including comparison of spectra on either side of the SC/LM phase boundary,
and a brief discussion of the many-body broadening characteristic of the high-energy Hubbard
satellites, which is correctly captured by the present theory. The weak-coupling (Ũ → 0)
behaviour of the spectra is then considered (section 7.1), for bothr < 1

2 where the resultant
state is SC (see e.g. figure 5) andr > 1

2 where it is LM. Forr < 1
2 andr > 1 in particular,

where perturbation theory inU about the non-interacting limit is known to be applicable [29],
we show that the present theory is perturbatively exact to (and including) second order inU .
Finally, comparison is made (section 7.2) to published NRG results for single-particle spectra
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in both SC and LM phases [28].
The procedure for determining the impurity Green functionG(ω), and hence the single-

particle spectrumD(ω) = −π−1 sgn(ω) ImG(ω), is simply summarized:G(ω) is given
by equations (3.2), (3.3), with interaction self-energies6̃σ (ω) (to which the symmetry equ-
ation (3.5) applies) given by equation (3.8), the dynamical contribution to which,6(ω), is given
in the present LMA by equation (5.8); and in the SC phase the pinning condition equation (5.9)
is enforced as described in section 5.1. In figure 10, forr = 0.2 (and the wide-band limit),
we show the resultant dimensionless spectraD′(ω̃) = 11/(1−r)

0 D(ω) versusω̃ = ω/11/(1−r)
0

upon progressively decreasingŨ in the LM phase:Ũ = 100 (a), 25 (b), 20 (c) and 17 (d); the
critical Ũc(r) ' 15.8. Figure 11 continues into the SC phase, withŨ = 14 (a), 7 (b) and 2 (c).
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Figure 10. Dimensionless single-particle spectraD′(ω̃) = 11/(1−r)
0 D(ω) versusω̃ = ω/11/(1−r)

0

for r = 0.2, with decreasing̃U in the LM phase:Ũ = 100 (a), 25 (b), 20 (c) and 17 (d); the critical
Ũc(r) ' 15.8. In (a) the corresponding mean-field spectrum is also shown (dashed line). Full
discussion is given in the text.

For Ũ = 100 (figure 10(a)),D′(ω̃) is entirely dominated by the Hubbard satellites
centred onω = ±U/2, with no spectral structure apparent in the vicinity of the Fermi level,
ω = 0. Throughout the LM phase,D′(ω̃) ∼ |ω̃|r asω → 0 (see equation (5.30b)) and
thus vanishes at the Fermi level, as is evident in figure 10. Upon decreasingŨ in the LM
phase, however, a narrow low-energy structure develops in the vicinity of the Fermi level, and
becomes increasingly pronounced (figures 10(b)–10(d)) asŨ is decreased towards the LM/SC
phase boundary at̃Uc(r). This is a precursor, in the LM phase, of the|ω|−r -divergence in
D(ω) characteristic of the SC phase asω → 0. The latter in turn is evident in figure 11 for
Ũ < Ũc in the SC phase where, with further decreasingŨ , the Hubbard satellites progressively
lose intensity, evolving smoothly to weak spectral shoulders and naturally vanishing entirely
asŨ → 0.

To illustrate the spectral evolution as the LM/SC phase boundary is approached,D′(ω̃)
(again forr = 0.2) is shown in figure 12 for̃U = 16.1 (LM) and Ũ = 15.5 (SC), i.e. for
Ũ/Ũc(r) = 1± δ with δ ' 0.02� 1; the inset compares the low-frequency behaviour of
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Figure 11. As figure 10, but forŨ < Ũc in the SC phase:Ũ = 14 (a), 7 (b) and 2 (c). In
(a) the corresponding mean-field spectrum is also shown (dashed line); and in (c) the spectrum
arising from second-order perturbation theory inU (section 7.1) is also shown (dashed line). Full
discussion is given in the text.
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Figure 12. Single-particle spectraD′(ω̃) versusω̃ close to the SC/LM phase boundary. For
r = 0.2, with Ũ = 16.1 (LM, solid line) and 15.5 (SC, dashed line); the criticalŨc(r) = 15.8.
Inset: low-ω̃ behaviour on a much expanded scale. Asδ = |1− Ũ/Ũc| → 0, LM and SC spectra
coincide to arbitrarily low energies.
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the spectra for|ω̃| < 1× 10−5. As can be seen, the LM and SC spectra are nearly coincident
on all frequency scales save the lowest (figure 12 inset); and asδ → 0 the LM/SC spectra
coincide to arbitrarily low energies, whence the spectra evolve smoothly as the phase boundary
is approached.

The behaviour described above is naturally not specific tor = 0.2, and figure 13 shows
a corresponding spectral series forr = 0.4. The principal difference from figures 10, 11 is
that, sinceŨc(r = 0.4) ' 8< Ũc(r = 0.2) (see figure 5), the Hubbard satellites are less well
developed in the vicinity of the SC/LM phase boundary.
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Figure 13. Spectral seriesD′(ω̃) = 11/(1−r)
0 D(ω) versusω̃ for r = 0.4 with (top to bottom)Ũ =

3, 6 (SC), 9, 12, 15, 18, 21 and 24 (LM);Ũc(r) ' 8.0.

Before proceeding we comment on the strong-coupling behaviour of the Hubbard satellite
bands inD(ω). In figure 10(a) we superimpose the corresponding UHF spectrumD0(ω) =
1
2[D0

↑(ω) + D0
↓(ω)] with D0

σ (ω) given by equation (4.3). This contrasts strongly with the
full LMA spectrumD(ω): the width of the LMA Hubbard satellites is essentially doubled,
and their peak heights halved, compared to the mean-field result. This additional many-body
spectral broadening is well known for the normalr = 0 Anderson model (see e.g. [6, 30]).
Its physical origins reflectbothprocesses illustrated in figure 2 whereby, having added aσ -
spin electron to a−σ -spin occupied impurity, either the addedσ -spin or the−σ -spin already
present may hop off the site (figures 2(a) and 2(b) respectively). The former alone (‘elastic
scattering’) is captured at UHF level; whereas the latter, involving correlated electron motion,
is also captured with the present LMA and doubles the rate of electron loss from the impurity
site, thus doubling the width of the Hubbard satellites (with concomitant halving of their peak
intensity).

The additional many-body broadening clearly occurs only if the impurity level lies within
the band,U/2 < D (for U/2 > D the Hubbard satellites are essentially unbroadened poles).
And its formal origins reside in equation (5.27) for6I

↑(ω) appropriate to the LM phase: as

Ũ → ∞, the poleweightQ (and local moment|µ0|) naturally saturate to unity, the second
term in equation (5.27) is of negligible intensity and6I

↑(ω) ∼ πU2D0
↓(ω)θ(−ω); using

equation (4.3) forD0
↓(ω) thus yields6I

↑(ω) ∼ 1I(ω) for frequenciesω ∼ −U/2 appropriate
to the lower Hubbard band (LHB).G↑(ω) follows from equation (3.3) with self-energy

6̃↑(ω)
U→∞∼ −1

2
U +6↑(ω)
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and forω ∼ − 1
2U the impurity Green function itself is given asU →∞ byG(ω) ∼ 1

2G↑(ω)
(as follows from equation (3.2) noting thatD↓(ω) is centred onω ∼ +1

2U ). Hence, for
frequenciesω ∼ −U/2 in the LHB,

G(ω) =U→∞∼
1
2

(ω +U/2)− 2i1I(ω)
: ω ∼ −U

2
(7.1)

(where we have neglected1R(ω) and6R
↑ (ω) since these merely induce a small shift in the

satellite positions that vanishes asU →∞); the analogous result for the upper Hubbard band
follows from particle–hole symmetry,G(−ω) = −G(ω). By contrast, the corresponding
mean-field resultG0(ω) ∼ 1

2G↑(ω) produces

G0(ω)
U→∞∼

1
2

(ω +U/2)− i1I(ω)
: ω ∼ −U

2
. (7.2)

The additional spectral broadening, and consequent halving of the satellite peak intensities,
is evident from equation (7.1) in comparison to its mean-field counterpart equation (7.2); and
equation (7.1) is found to provide a numerically accurate description of the Hubbard satellites
in strong coupling, for anyr in the LM phase.

The above qualitative behaviour is not however confined exclusively to strong coupling,
but persists in practice throughout the LM regime and (forr < 1

2) into the SC state.
This is seen in figure 11(a) forr = 0.2 and Ũ = 14 in the SC phase: the Hubbard
satellites inD(ω) remain centred onω ∼ ±U/2 and, in comparison to the mean-fieldD0(ω)

(superimposed on the figure), the additional many-body broadening and halving of the satellite
peak intensities remains clearly evident. We add further that asr → 0, whereŨc(r) ∼ 1/r
(see equation (6.11)), the SC phase persists to increasingly largeŨ ; and equation (7.1) can
again be shown to hold asymptotically for the SC state, starting from equation (5.12) for the
self-energy appropriate to the SC phase and employing a directly analogous argument to that
given in [30] for ther = 0 Anderson model.

7.1. Weak coupling

We consider now the behaviour of the spectra in weak coupling,Ũ → 0, focusing separately
on ther-regimesr < 1

2, r > 1 and1
2 < r < 1, and recalling that forr < 1

2 andr > 1, conven-
tional perturbation theory inU about the non-interacting limit is known to be applicable [29].

We begin withr < 1
2, where asŨ → 0 the ground state is SC (see e.g. figure 5).

Upon decreasing̃U in the SC phase, the local moment|µ| determined self-consistently from
equation (5.9) (see section 5.1) progressively diminishes and vanishes at aŨ0 ≡ Ũ0(r)

(<Ũ0
c (r) (see section 4.1), as found in our previous study of ther = 0 Anderson model

[30]). For Ũ < Ũ0, |µ| = 0 is the sole solution; and since the mean-field propagatorsGσ (ω)
(equation (4.2)) depend onU and the spinσ solely in the combinationσU |µ|/2, both they
and the polarization bubbles05(ω) (equation (5.3)) are independent of bothŨ and the spin
indices, and are given by the non-interacting limit result. In consequence the interaction
self-energies6σ(ω) (equation (5.8)) are likewiseσ -independent, and hence coincide with
the single self-energy6(ω) defined by equation (2.12) (as follows using equations (3.2),
(3.3), (3.8)). From equation (5.8) for6↑(ω) ≡ 6(ω), the Ũ -dependence of the self-
energy thus arises from the explicitU2-prefactor thereto, together with theU -dependence
of (5+−(ω) ≡) 5(ω) = 05(ω)/(1 − U05(ω)) entering the self-energy kernel. But for
Ũ < Ũ0, 5(ω) may be expanded perturbatively inU ; and its leading term,05(ω), when
used in equation (5.8) for6(ω), recovers precisely the result of conventional second-order
perturbation theory (SOPT) inU [29].
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Thus, while the primary emphasis of the present LMA is naturally on the strong-coupling
behaviour dominated by the low-energy spin-flip dynamics, the resultant theory forr < 1

2
is also perturbatively exact to/including second order inU asU → 0. This is seen clearly
in figure 11(c) forr = 0.2 andŨ = 2, where the full LMA spectrum is compared to its
SOPT counterpart. We also add that it is straightforward to show that the stability condition
equation (5.21) required for the SC state is always satisfied therein; and in particular that
Re5+−(ω = 0) evolves smoothly as̃U passes through̃U0(r), and is both positive definite and
finite for all Ũ < Ũc(r) in the SC phase. In consequence, the LMA spectrumD(ω) likewise
evolves smoothly upon decreasingŨ in the SC phase.

We now turn tor > 1 where the ground state is LM forall Ũ , including the non-interacting
limit Ũ = 0 (see section 2.1 and [29]). Here too the present LMA recovers asymptotically
the results of conventional SOPT asŨ → 0; as seen clearly in figure 14 forr = 1.5 with
Ũ = 7.5×10−4 andU/D = 1

2, where the LMA and SOPT spectra are compared. The spectra
are shown on a logarithmic scale to bring out clearly the low-ω behaviour, which asU → 0 is
given by the SOPT result equation (5.31), namely

(1
1/(1−r)
0 D(ω) =) D′(ω̃) ∼ [12/π(Ũq)2]|ω̃|r

to which end [π(Ũq)2/12]D′(ω̃) is plotted. As seen from figure 14, the difference between
the LMA and SOPT spectra for the chosenŨ is barely perceptible, and becomes even less so
with further decreasingU .
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Figure 14. Comparison between LMA (solid line) and SOPT (dashed) spectra, forr = 1.5 with
Ũ = 7.5× 10−4 andU/D = 1

2 ; [π(Ũq)2/12]D′(ω̃) versusω̃ is shown on a logarithmic scale. As

Ũ → 0, the LMA recovers SOPT precisely. Full details are given in the text.

In contrast to theŨ → 0 behaviour forr < 1
2, however, this result is rather remarkable.

For r < 1
2, with a SC ground state as̃U → 0, the self-energies6σ(ω) coincide precisely

with each other and with the single self-energy6(ω), as shown above: all self-energies are
equivalent. But this is not the case forr > 1. Here, even as̃U → 0, the local moment
|µ0| remains finite (see equation (4.13)),5+−(ω) is not therefore expandable perturbatively in
U , and the self-energies6↑(ω) and6↓(ω) do not coincide. Nonetheless, from a knowledge
solely of 6̃↑(ω) = −U |µ0|/2 +6↑(ω), the single self-energy6(ω) may still be obtained
directly from equation (3.7) which is quite general; as now considered for arbitrary interaction
strength, focusing on the salient low-frequency behaviour. Theω→ 0 behaviour of6I

↑(ω) is
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given for the LM phase by equation (5.29), and forr > 1 it is straightforward to show that the
corresponding real part has the low-ω behaviour6R

↑ (ω)−6R
↑ (0) ∼ −γω with γ ≡ γ (U) > 0

given by equation (5.18b). Using this in equation (3.7) leads to the following low-ω behaviour
of 6(ω) = 6R(ω)− i sgn(ω)6I(ω) for r > 1:

6I(ω)
ω→0∼ (6̃R

↑ (0))
2

[
πq

1 +qγ (U)
δ(ω) +

3q2

(1 +qγ (U))2
1I(ω)

ω2

]
(7.3a)

6R(ω)
ω→0∼ (6̃R

↑ (0))
2 q

1 +qγ (U)
P

(
1

ω

)
(7.3b)

(with corrections O(|ω|r−2; |ω|) in the latter case); whereq = [1− (∂1R(ω)/∂ω)ω=0]−1 given
by equation (2.10b) is the poleweight in the non-interacting single-particle spectrum.

Equation (7.3) is quite general. But asU → 0, γ (U) may be shown to vanish and
6̃R
↑ (ω = 0) is dominated by the Fock contribution of− 1

2U |µ0|, with |µ0| → q asU → 0
(see equation (4.13)). Hence, forU → 0, equation (7.3a) for example reduces to

6I(ω)

U→0
ω→0∼ U2q2

4

[
πqδ(ω) + 310q

2|ω|r−2
]
. (7.4)

This is precisely the result obtained from conventional SOPT forr > 1; see equations (5.10),
(5.11) of reference [29]. And we note that its correct recovery reflects the fact that the prefactor
to theω-dependence of6I/R(ω) in equation (7.3), namely [̃6R

↑ (0)]
2 ∼ [ 1

2U |µ0|]2 asU → 0,
is O(U2) asU → 0.

The latter remark also sheds some light on the inapplicability of conventional perturbation
theory inU for 1

2 < r < 1, since within SOPT the prefactor to theω-dependence of6I/R(ω) is
O(U2) by construction. The low-ω behaviour of6I/R(ω) in the LM phase forr < 1 has been
considered in section 5.2 and is given generally by equation (5.33), exhibiting a characteristic
|ω|−r -divergence asω → 0 with aU -dependent prefactor that is again [6̃R

↑ (0)]
2; and for

1
2 < r < 1 the LM phase occurs for allU > 0 (figures 5, 7, 8); henceU → 0+ can be
considered. As forr > 1, [6̃R

↑ (0)]
2 ∼ [ 1

2U |µ0|]2 again asU → 0; but for 1
2 < r < 1

the local moment|µ0| is given by equation (4.12) and itself vanishes asU → 0, whence
[6̃R
↑ (0)]

2 ∼ U2r/(2r−1) asU → 0. For 1
2 < r < 1 the prefactor to theω-dependence of

6I/R(ω) thus vanishes asU → 0, but with an exponentε = 2r/(2r − 1) that is in general
non-integral and strictly greater than 2. Such behaviour cannot by construction be captured
by SOPT (or indeed by conventional perturbation theory to any finite order inU ); an inability
that is not unexpected when one recalls that the ground state of the strict non-interacting limit
U = 0 is SC for allr < 1 [29].

We emphasize, however, that while the behaviour in the LM phase of thesingleself-
energy6(ω)—obtained as a by-product of the LMA via equation (3.7)—is both singular and
dependent upon whetherr ≷ 1 (cf. equations (7.3), (5.33)), the same does not hold for either
the self-energies̃6σ(ω) central to the LMA (see section 5.2) or the single-particle spectra;
in particular, the low-ω behaviour ofD(ω) for all U > 0 in the LM phase isD(ω) ∼ |ω|r
(equation (5.30b)) for anyr > 0.

7.2. Comparison to NRG

We now compare predicted LMA spectra with the NRG results of Bulla, Pruschke and Hewson
[28], obtained for a fixedU/D = 10−3 using a discretization parameter3 = 2 (3 → 1
recovers the continuum limit) and with∼800 states retained at each NRG iteration. The
two sets of spectra are shown in figure 15 as a function ofω/D, on a logarithmic scale to
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Figure 15. Comparison between LMA spectra (a) and NRG spectra [28] (b) for fixedU/D = 10−3.
(i) r = 0.25,10 = 0.02 (SC, solid line); (ii)r = 0.25,10 = 0.0002 (LM, dotted); (iii)r = 0.75,
10 = 0.02 (LM, dashed). Spectra are shown on a logarithmic scale, as a function ofω/D.

show clearly the low-ω behaviour; for (i)r = 0.25 and10 = 0.02 (SC state,Ũ ' 0.18);
(ii) r = 0.25 and10 = 0.0002 (LM state,Ũ ' 85); (iii) r = 0.75 and10 = 0.02 (LM state,
Ũ = 6.25× 103).

The characteristicω→ 0 behaviour of the two phases is clearly seen,D(ω) ∼ |ω|r (LM)
and∼|ω|−r (SC). The two LM spectra have pronounced Hubbard satellites, that forr = 0.75
being centred precisely atω = U/2; while in the SC spectrum—which is a weak-coupling
example (̃U ' 0.18)—the satellites are no longer a distinct feature and have been absorbed
into the band.

The agreement between the LMA and NRG results is self-evident. For the SC example
in particular, the agreement is essentially perfect for allω when a small, controlled degree
of spectral broadening is used to smooth the (necessarily discrete) NRG data [35]; and the
ω → 0 behaviour of the NRG data is readily shown to coincide precisely with that of the
non-interacting limit (equation (2.11)), as we have shown is required for the SC state (see
section 2.2 and [29]).

Finally, we note that the present LMA includes in6σ(ω) the sum of all particle–hole
interactions in the transverse spin channel (figure 3(a))—that captures the low-energy spin-flip
physics (section 5)—and one can of course additionally include repeated particle–particle and
‘bubble’ interactions (see figure 9 of [30]). However, as in reference [30] for the normalr = 0
Anderson model, these have a very minor effect on predicted spectra and are not therefore
considered explicitly in the present work.

8. Spectra: pinning and scaling

We turn now to a rather subtle, and superficially hidden, aspect of the problem: scaling of single-
particle spectra in the SC phase (r < 1

2) as the SC/LM phase boundary is approached. Such
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behaviour is of course well known for the normalr = 0 Anderson model (see e.g. [2, 4, 15])
where with increasing̃U the width of the Kondo resonance inD(ω) becomes exponentially
small, reflecting the exponential diminution of the Kondo scaleωK (see equation (6.13)); and
the Kondo resonance becomes a universal function ofω/ωK .

Ther = 0 universal scaling curve has three essential characteristics:

(i) It is pinned at the Fermi level:π10D(ω = 0) = 1 for all Ũ ;
(ii) with characteristic low-frequency Fermi liquid behaviour:D(ω)−D(0) ∼ [ω/ωK ]2 for

ω/ωK � 1.
(iii) On largerω/ωK scales the spectrum follows a Doniach–S̆unjíc law [13–15] indicative of

the orthogonality catastrophe, wherebyD(ω) ∼ [|ω|/ωK ]−α with α = 1− 2[δ0/π ]2 and
δ0 = π/2 the Fermi level phase shift; i.e.D(w) ∼ [|ω|/ωK ]−1/2. This has been observed
in both a QMC study of ther = 0 symmetric spin-12 Anderson model [15] and an NRG
study ofD(ω) for ω < 0 in the asymmetric case [14]; in practical terms, Doniach–S̆unjíc
(DS) behaviour in the scaledD(ω) sets in forω/ωK & 1 [14, 15].

The question arises as to whether the above behaviour is specific to ther = 0 Anderson
model, a conventional Fermi liquid; or whether it is but a particular example of behaviour
generic to the SC phase for anyr < 1

2. We show it to be the latter, and to be directly and
generally apparent not inD(ω) itself but in the modified spectral functionA(ω) = |ω|rD(ω).
That this is so is natural, since (a) it isA(ω) that is pinned at the Fermi levelω = 0 for anyr > 0
where a SC state obtains (section 2.2 and [29]); and (b) inA(ω) the unrenormalized|ω|−r -
divergence inD(ω) has been removed, thus ‘exposing’ directly the low-frequency many-body
renormalization characteristic of the Kondo effect, and hence the Kondo scale as shown below.

Specifically, we focus onF(ω) defined by

F(ω) = π10

[
1 + tan2

(
π

2
r

)]
|ω|rD(ω) (8.1)

which, in the SC phase, is pinned at the Fermi level (equation (2.16b)): F(ω = 0) = 1 for
anyr. Figure 16 illustratesF(ω) versusω̃ = ω/11/(1−r)

0 for r = 0.2 in the wide-band limit,
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Figure 16. F(ω) versusω̃ = ω/11/(1−r)
0 in the SC phase; forr = 0.2 (the wide-band limit) with

Ũ = 5, 10 and 15. Note the spectral pinning (F(0) = 1) and diminishing width of the Kondo
resonance with increasing̃U towardsŨc(r) ' 15.8 whereωm→ 0.
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with Ũ = 5, 10 and 15 (<Ũc(r) ' 15.8). Spectral pinning is evident. More significantly, so
too is a generalized Kondo resonance inF(ω) which has (a) cusp behaviour asω → 0, and
(b) a width (Kondo scale) that narrows progressively upon increasingŨ towardsŨc(r) and
vanishes as̃U → Ũc(r)−. We show below that the latter is the spin-flip scaleωm(r) discussed
in detail in sections 5 and 6.

First we establish the low-ω behaviour ofF(ω), and its cusp characteristics. This follows
fromD(ω) = 1

2[D↑(ω)+D↓(ω)] withDσ(ω) = −π−1 sgn(ω) ImGσ(ω), using equation (3.3)
for Gσ(ω) together with equations (2.5), (2.9) for1I/R(ω) and6̃R

σ (ω) ∼ −γω asω → 0
(equation (5.19)). (Sincẽ6I

σ (ω) decays to zero more rapidly than6̃R
σ (ω), see equation (5.17),

it is irrelevant to the leading low-ω behaviour.) The result is

F(ω) ω̃→0∼ 1− sin(πr)(q−1 + γ )|ω̃|1−r − (q−1 + γ )2φ(r)|ω̃|2(1−r) (8.2)

with q−1 given by equation (2.10b) (here forr < 1
2); and

φ(r) = cos2
(
π

2
r

)[
1− 4 sin2

(
π

2
r

)]
such thatφ(0) = 1. Forr > 0,F(ω) asω̃→ 0 is thus dominated by an|ω̃|1−r -cusp (seen in
figures 16 and 19 (bottom) shown below); but its prefactor vanishes asr → 0, and forr = 0
the parabolic Fermi liquid behaviourF(ω) − 1 ∼ ω̃2 characteristic of the normal Anderson
model is recovered.

We now determine the behaviour ofF(ω), equation (8.2), as̃U → Ũc(r)− where the
low-energy spin-flip scaleωm(r) vanishes as described in sections 5.1 and 6.2; and for which
γ = −(∂6̃R

↑ (ω)/∂ω)ω=0 is thus required. The full self-energỹ6R
↑ (ω) = − 1

2U |µ| + 6R
↑ (ω)

is given generally in the SC phase by6̃R
↑ (ω) = 6R

↑ (ω) − 6R
↑ (0) (from equation (5.9)); and

the low-ω behaviour of6R
↑ (ω) may be extracted analytically in strong couplingŨ � 1

where, from a trivial extension of the argument given in section 6.1 leading to equation (6.4),
6R
↑ (ω) ∼ U2 ReG−↓ (ω + ωm). Using equation (6.8b) (with x ≡ 1

2U ) for theω > 0 behaviour
of ReG−↓ (ω) then yields

6̃R
↑ (ω)

ω→0∼ − 410

sin(πr)
ωrm

[(
1 +

ω

ωm

)r
− 1

]
(8.3)

(with corrections O[(ωm/λ)(1 +ω/ωm)]) whereλ = min[D,U/2]; and hence forω/ωm � 1
the requisite low-ω behaviour

6̃R
↑ (ω)

ω→0∼ − 4r

sin(πr)
ω̃r−1

m ω ≡ −γω. (8.4)

From equations (8.2), (8.4) the asymptotic behaviour ofF(ω) as the SC/LM phase
boundary is approached,Ũ → Ũc(r)−, is thus given by

F(ω) ∼ 1− 4r

( |ω̃|
ω̃m

)1−r
−
(

4r

sin(πr)

)2

φ(r)

( |ω̃|
ω̃m

)2(1−r)
(8.5)

(where the terms involvingq−1 drop out sinceωm(r) → 0). The specificr-dependent
coefficients here are naturally valid asymptotically asr → 0, since the above analysis holds
strictly asŨc(r)→∞ (see section 6.1 and equation (6.11)); although in practiceŨc(r) � 1
for all r < 1

2 (see e.g. figure 5). The important point of course is thatF(ω) exhibits universal
scaling; and that, as expected physically, it is indeed the spin-flip or Kondo energyωm(r) that
sets the scale for such behaviour. Note relatedly that the physical content of equation (5.20)
for the SC phase is the restoration, for sufficiently long times, of the locally broken symmetry
inherent to the zeroth-order mean-field level of description; and that this timescale is 1/ωm (as
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for the normal Anderson model [30], the result for which is ther = 0 limit of equation (8.4)).
For the doubly degenerate LM state by contrast there is naturally no such symmetry restoration,
reflected in the fact that6↑(ω) and6↓(ω) do not coincide asω→ 0 (see equation (5.29)).

The analysis above, while demonstrating universality, is confined to the low-frequency
behaviourω/ωm � 1. We now consider the scaling behaviour ofF(ω) over the entireω/ωm

range.

8.1. Scaling ofF(ω)

We begin with ther = 0 Anderson model, for whichF(ω) ≡ π10D(ω). The resultant
F(ω) versusω/ωm obtained from the LMA is shown in figure 17, which universal form is
reached in practice for̃U & 5π [30]. This scaling spectrum was itself obtained in [30], but
one important facet of it was not noted (and we are grateful to A E Ruckenstein for bringing
it to our attention): the DS tails forω/ωm & 1 are captured by the theory. This is seen in
figure 17 where an(ω/ωm)

−1/2 fit is made to the wings of the spectrum. Detailed comparison
between the LMA scaling spectrum and NRG calculations will also be given in a subsequent
paper [31]; suffice it here to say that the agreement is rather good. To our knowledge the LMA
is the only theoretical approach that captures simultaneously the characteristic low-ω Fermi
liquid behaviourD(ω)−D(0) ∼ [ω/ωm]2, and the DS tails forω/ωm & 1 that are known to
arise experimentally (see e.g. [16]) but to be washed out in e.g. slave-boson or 1/N expansion
approaches [10–12].
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Figure 17. Scaling for the normal (r = 0) AIM: F(ω) ≡ π10D(ω) versusω/ωm. The Doniach–
S̆unjíc tails are seen from the(ω/ωm)

−1/2 fit to the wings of the spectrum (dashed line).

We also point out the apparent small spectral feature occurring in figure 17 atω/ωm ∼ 1.
As discussed in [30] this is entirely an artifact of using the specific form equation (5.2) for
5+−(ω) in equation (5.8) for the self-energy. This is not however an integral element of the
LMA and (as discussed in [30]) may be circumvented, thereby eliminating the spectral anomaly
but otherwise producing no significant effect on either the scaling spectrum (see figure 12 of
[30]) or previously deduced asymptotics. The same feature is naturally present also in the
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r > 0 spectra below, and can likewise be removed; but it is a minor effect that we are content
to live with in the following.

For r = 0.2, the resultantF(ω) for the wide-band limit is illustrated in figure 18 for̃U =
10, 13 and 15. The inset shows the central portion of the Kondo resonance—whose halfwidth
is proportional toωm(r), as for ther = 0 model [30]—versus̃ω = ω/11/(1−r)

0 on an ‘absolute’
scale, to illustrate its rapid narrowing with increasingŨ and vanishing as̃U → Ũc(r)− ' 15.8.
The main figure by contrast showsF(ω) versusω/ωm, from which universality is evident; and
note that although̃Uc(r) is finite for allr > 0, the Hubbard satellites are again eliminated from
the scaling spectrum sinceωm(r)→ 0 asŨ → Ũc(r)−. We add moreover that whilẽUc(r)

itself depends on the host bandwidthD (see figures 7, 8), the latter has no detectable influence
on the scaling spectrum; as is expected physically, and indeed seen from equations (8.2), (8.5)
where theD-dependence of the former (contained inq−1) is eliminated in equation (8.5) as
ωm(r)→ 0.
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Figure 18. Scaling behaviour of Kondo resonance for ther > 0 SC phase: forr = 0.2, F(ω)
versusω/ωm for Ũ = 10 (dotted), 13 (dashed) and 15 (solid). Inset: the correspondingF(ω)
versusω̃ = ω/1

1/(1−r)
0 on an ‘absolute’ scale, to show the narrowing of the Kondo resonance

upon increasing̃U towards the SC/LM transition at̃Uc(r) ' 15.8 whereωm→ 0.

Finally, figure 19 (top) compares the universal scaling spectraF(ω) versusω/ωm for r =
0, 0.2 and 0.4; while figure 19 (bottom) shows the data on a reduced scaleω/ωm < 1 for
five different r-values, to illustrate in particular the evolution of the low-ω cusp behaviour
(equation (8.5)). From figure 19 (top) it is seen that, as for ther = 0 case, DS tails again
arise in the scaling spectrum forω/ωm & 1. Numerical analysis shows these to have the
form F(ω) ∼ [ω/ωm]−ν with exponentν(r) = 1

2 − r, thus ‘flattening out’ with increasingr
as is evident in figure 19 (top). Note moreover from equation (8.1) that whileD(ω) itself is
not a universal function ofω/ωm, ωrmD(ω) ∝ (|ω|/ωm)

−rF(ω) does exhibit scaling. Its DS
tail behaviour is thus∼(|ω|/ωm)

−1/2 as for the normalr = 0 model; and we note that this
conforms to the DS law exponent ofα = 1− 2[δ0/π ]2, since forr > 0 the phase shiftδ0

precisely at the Fermi level is readily shown to beπ/2, as for ther = 0 case.
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Figure 19. Universal scaling spectraF(ω) versusω/ωm. Top: forr = 0 0.2 and 0.4. DS tails arise
in all cases, and ‘flatten out’ with increasingr; details are given in the text. Bottom: forω/ωm < 1
andr = 0, 0.05, 0.1, 0.2 and 0.4 (from outside to inside), to illustrate the evolution of the low-ω

‘cusp’ behaviour.

For ther > 0 SC phase generally, the local moment approach thus predicts universal
scaling of the modified spectral functionF(ω) (equation (8.1)) as the SC/LM phase boundary
is approached; with characteristic Fermi level pinning, low-ω cusp behaviour and DS tails in
F(ω). In a subsequent paper [31] we shall see that these predictions are borne out by NRG
calculations, to which detailed comparison will be made.

9. Summary

We have developed in this paper a many-body local moment approach to the symmetric soft-
gap Anderson impurity model, including the ‘normal’ (r = 0) Anderson model as a particular
limit [30]. The LMA is naturally non-perturbative, and both the notion of local moments and
thea priori possibility of either a SC or LM state are introduced explicitly andself-consistently
from the outset; as reflected in the employment of an underlying two-self-energy description,
together with self-consistent imposition of theU -independent spectral pinning condition at
the Fermi level that is characteristic of the SC phase [29].

The primary emphasis of the LMA is on single-particle dynamics—posing well known
and hitherto unsurmounted difficulties for traditional theories—but an integral element of the
approach also permits direct analysis of the SC/LM transition and associated phase boundaries.
The theory offers a rather comprehensive description of both SC and LM phases, for anyr > 0.
The entire range of interaction strengths is also covered, including the Kondo/spin-fluctuation
physics that dominates the SC phase at large interaction strengths, and the ‘cost-free’ spin-flip
physics of the LM state; as well as the weak-coupling (small-U ) behaviour that is not as prosaic
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as naive expectation might suggest, being intrinsically non-perturbative for1
2 < r < 1.

While the theory leads to very good agreement with extant NRG calculations [21, 28],
a significant number of further predictions arise from it that can likewise be tested, in regard
both to phase boundaries and dynamics; and including for example the predicted universal
scaling of SC spectra as the SC→ LM transition is approached—leading to anr-dependent
family of universal spectra, of which that well known to arise for the normal Anderson model
should represent but a particular example, symptomatic of generic behaviour characteristic of
the SC (or ‘generalized Fermi liquid’) phase. These issues will be taken up in a subsequent
publication [31], where predictions arising from the LMA will be shown to be remarkably well
supported by benchmark NRG calculations.
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Appendix

We outline the asymptotic behaviour of the self-consistency equation (4.6) for the mean-field
local moment|µ|, asx = 1

2U |µ| → 0; the SC/LM phase boundary at mean-field level can
thereby be found; see section 4.1. The general case of a finite hybridization/host bandwidth
D is considered, whence (section 4.1) theD0

σ (ω) contain pole contributions from outside the
band (|ω| > D) for all x > 0; the corresponding poleweights are denoted byQ±σ with +/−
for ω > D andω < −D respectively.

From equation (4.6) the UHF self-consistency equation is thus

|µ| =
∫ 0

−D
dω

[
D0
↑(ω)−D0

↓(ω)
]

+
[
Q
(−)
↑ −Q(−)

↓
]

(A.1a)

= fb(x) +
[
Q
(−)
↑ −Q(−)

↓
]

(A.1b)

≡ f (x) (A.1c)

where (from equation (4.3))

fb(x) =
∫ 0

−D

dω

π
1I(ω)

[
1

(ω + x −1R(ω))2 +12
I (ω)
− 1

(ω − x −1R(ω))2 +12
I (ω)

]
.

(A.2)

It is straightforward to show that the pole contributions [Q
(−)
↑ −Q(−)

↓ ] ∼ O(x) asx → 0; we
thus focus onfb(x).

A1. 06 r < 1
2

From (A.2), (
∂fb(x)

∂x

)
0

= − 4

π

∫ 0

−D
dω

1I(ω)[ω −1R(ω)]

([ω −1R(ω)]2 +12
I (ω))

2
. (A.3)

The low-ω behaviour of the integrand in (A.3) is∼|ω|−2r , whence the integral converges for
r < 1

2. In consequencefb(x), and hencef (x), is O(x) as x → 0; i.e. the exponent in
equation (4.9) ism = 1. Forr < 1

2 the mean-fieldUc ≡ U0
c (r) is thus finite and given by

equation (4.10a).
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A2. 1
2 < r < 1

The integral in (A.2) is controlled by its low-ω behaviour, and we replace1R(ω) therein by
its low-ω form 1R(ω) ∼ −sgn(ω)β(r)10|ω|r (equation (2.9)), whereβ(r) = tan((π/2)r).
Transforming the integration variable in (A.2) fromω to z = (10/x)

1/r |ω| then yields for
r < 1

fb(x)
x→0∼ x(1−r)/r

1

π1
1/r
0

∫ ∞
0

dz zr
[

1

(1− β(r)zr)2 + z2r
− 1

(1 +β(r)zr)2 + z2r

]
. (A.4)

This integral converges only forr > 1
2 whence, for1

2 < r < 1, fb(x) and hencef (x) have
thex → 0 behaviourf (x) ∼ xm with exponentm = (1− r)/r < 1. In consequence,|µ|
vanishes only asU → 0; see equation (4.12).

A3. r > 1

From the normalization condition uponD0
σ (ω),∫ 0

−D
dω D0

↑(ω) = 1−
∫ D

0
dω D0

↑(ω)− [Q(−)
↑ +Q(+)

↑ ]. (A.5)

Hence from (A.1a), (A.1c) the full f (x) is given by

f (x) = 1− 2
∫ D

0
dω D0

↑(ω)− [Q(+)
↑ +Q(−)

↓ ] (A.6)

where particle–hole symmetry is used (D0
↓(ω) = D0

↑(−ω). But asx → 0,
∫ D

0 dω D0
↑(ω)

reduces to
∫ D

0 dω db
0(ω) (with db

0(ω) the band contribution to the non-interacting spectrum;
see section 2.1); and forx = 0,Q(+)

σ = Q(−)
σ ≡ Q0 is independent ofσ . Hence

f (x = 0) = 1− 2
∫ D

0
dω db

0(ω)− 2Q0. (A.7)

But from normalization of the non-interacting spectrumd0(ω) (see equation (2.10a)),

1= q + 2
∫ D

0
dω db

0(ω) + 2Q0 (A.8)

where the weight,q, of theω = 0 pole ind0(ω) is given by equation (2.10b). Hence, for
r > 1, f (x = 0) = q; the exponentm in equation (4.9a) is thusm = 0, and in consequence
the local moment

|µ| x→0∼ q (A.9)

as follows from equation (4.8).

References

[1] Anderson P W 1961Phys. Rev.12441
[2] Hewson A C 1993The Kondo Problem to Heavy Fermions(Cambridge: Cambridge University Press)
[3] Kuramoto Y 1983Z. Phys.B 5337
[4] Keiter H and Kimball J C 1971Int. J. Magn.1 233

Keiter H and Morandi G 1984Phys. Rep109227
[5] Bickers N 1987Rev. Mod. Phys.59845
[6] Pruschke Th and Grewe N 1989Z. Phys.74439
[7] Gunnarsson O and Schönhammer K 1983Phys. Rev.B 284315
[8] Gunnarsson O and Schönhammer K 1985Phys. Rev.B 314815
[9] Bickers N E, Cox D L and Wilkins J W 1987Phys. Rev.B 362036



1028 D E Logan and M T Glossop

[10] Read N and Newns D M 1983J. Phys. C: Solid State Phys.163273
Read N and Newns D M 1983J. Phys. C: Solid State Phys.16L1055

[11] Coleman P 1987Phys. Rev.B 355072
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