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Abstract. A local moment approach is developed for single-particle excitations of a symmetric
Anderson impurity model (AIM) with a soft-gap hybridization vanishing at the Fermi level:

A « |o|", with r > 0. Local moments are introduced explicitly from the outset, and a two-self-
energy description is employed in which single-particle excitations are coupled dynamically to
low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and
captures both the spin-fluctuation regime of strong coupling (leijgeas well as the weak-coupling
regime where itis perturbatively exact for thesdomains in which perturbation theoryithis non-
singular. While the primary emphasis is on single-particle dynamics, the quantum phase transition
between strong-coupling (SC) and local moment (LM) phases can also be addressed directly; for the
spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained,
notably for the behaviour of the critical.(r) separating SC/LM states and the Kondo seajér)
characteristic of the SC phase. Results for both single-particle spectra and SC/LM phase boundaries
are found to agree well with recent numerical renormalization group (NRG) studies; and a number of
further testable predictions are made. Single-particle spectra are examined systematically for both
SCand LM states; in particular, fal 0 < r < % , spectra characteristic of the SC state are predicted

to exhibit anr-dependent universal scaling form as the SC/LM phase boundary is approached and
the Kondo scale vanishes. Results for the ‘norma# 0 AIM are moreover recovered smoothly

from the limitr — 0, where the resultant description of single-particle dynamics includes recovery
of Doniach-Sunjic tails in the wings of the Kondo resonance, as well as characteristic low-energy
Fermi liquid behaviour and the exponential diminution withof the Kondo scale itself. The
normal AIM is found to represent a particular case of more generic behaviour characteristic of the
r > 0 SC phase which, in agreement with conclusions drawn from recent NRG work, may be
viewed as a non-trivial but natural generalization of Fermi liquid physics.

1. Introduction

The Anderson impurity model (AIM) [1] is the archetype for describing dilute, correlated
magnetic impurities in metals. Reviewed comprehensively in [2], its essential strong-coupling
behaviour is that of the Kondo effect: the spﬁn’mpurity is quenched by coupling to low-
energy excitations of the non-interacting metallic host. But while thermodynamic properties of
the model are well understood, the same cannot be said for a theoretical description of dynamics,
in particular that of single-particle excitations. Here a wide variety of theories have been
developed, including the non-crossing approximation (NCA) [3-6) &xpansions [7-9] and
slave-boson approaches [10-12]. Their undoubted successes notwithstanding, however, each
has significant limitations. They are designed to capturé\the oo limit (as opposed to the

spin—; caseN = 2), and the extreme asymmetric limit&f = oo with U the local (impurity)
interaction: extension to finitg is not straightforward. The NCA describes well high-energy
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single-particle excitations embodied in the Hubbard satellite bands, but fails to capture the low-
energy Fermi liquid behaviour of the Kondo resonance. Slave-boson approaches by contrast
are much less satisfactory on high-energy scales, their virtue being to handle low energies and
Fermiliquid behaviour. Even here however they are limited: in common withéxpansions,

they cannot for example recover the DoniaBhmijic tails [13] in the Kondo resonance that are
observed in numerical renormalization group [14] and quantum Monte Carlo [15] studies of
the AIM, and known to be important experimentally [16].

The normal AIM has of course one ‘simplifying’ feature: the host is metallic by
presumption, whence the host—impurity coupling embodied in the hybridization furction
is essentially frequency independent and controlled by its value at the Fermidevel;
in consequence, and excepting the atomic limit where the impurity/host trivially decouple,
the impurity spin is quenched and the system is a conventional Fermi liquid for &l 0
(see e.g. [2]). The brief remarks above are nonetheless not confined to this problem, but
symptomatic in general of the widely accepted need for new theoretical approaches to strongly
correlated electrons. Andthe challenge is naturally more acute wheyacquires afrequency
dependence that can lead to qualitatively new physics, and in particular the possibility of non-
trivial zero-temperature phase transitions. One example of such arises in the lattice-based
Hubbard model, which within the framework of dynamical mean-field theory (or the infinite-
dimensional limit) maps onto an effective AIM [17] with a hybridization that is a functional
of the impurity Green function, and is hence battdependent and to be determined self-
consistently. The quantum phase transition here is the celebrated and still controversial Mott
transition, occurring at a criticdl, in the paramagnetic phase of the half-filled (particle-hole-
symmetric) model: between a gapless Fermi liquid metal, and a gapped local moment insulator
characterized by &g In 2 residual entropy (for reviews, see e.g. [18-20]).

A second example, considered in this paper, is the soft-gap AIM appropriate to a semi-
metallic host, or one that itself may be viewed as being on the verge of a simple band-crossing
metal—insulator transition: in which the (imaginary part of the) hybridization function exhibits
a soft-gap at the Fermi level (w) o |w|" with r > 0, in contrast to the normal ‘metallic’

AIM, r = 0, for which A;(w = 0) is constant. This problem, for which a wide range of
possible experimental candidates arise (see e.g. [21]), was first studied by Withoff and Fradkin
[22] in the context of the corresponding soft-gap Kondo model, using both ‘poor man’s’ scaling
and a largelV mean-field theory. Much study of the soft-gap Kondo and Anderson models
has since ensued, in particular via scaling [22, 23], lavgexpansions [22, 24, 25], the
numerical renormalization group (NRG) [21, 23, 26—28] and perturbation thedry[29)].

It is known thereby that two distinct ground states exist, between which in general a quantum
phase transition occurs at a finite criti¢&l(r): a doubly degenerate local moment (LM) state

in which the impurity spin remains unquenched; and a strong-coupling (SC) state in which the
impurity spin is locally quenched, and a Kondo effect is manifest.

The underlying physics is known to be particularly rich for the particle—hole-symmetric
model, to which NRG studies in particular have devoted considerable attention, including
both thermodynamic properties [21, 26—28] and impurity single-particle spectra [28]. It is
the symmetric spin}— soft-gap AIM that we consider here, by developing a microscopic ‘local
moment approach’ that has recently been applied successfully to the nermal] AIM
[30]. Our primary focus is thus an analytical treatment of single-particle dynamics—on all
energy scales, and for any interaction strerigthas embodied in the impurity Green function,
G(w), and hence spectrub (w) « Im G(w); although an integral element of the approach
also permits statics, in the form of the SC/LM transition and associated phase boundaries, to
be addressed directly.

The resultant theory, which seeks in particular to capture the spin-fluctuation regime of
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strong coupling (larg€’) but is also perturbatively exact in weak coupling for thesomains

in which straight perturbation theory i is known to be applicable [29], appears to be rather
successful. Its predictions for single-particle spectra and SC/LM phase boundaries agree
well, both qualitatively and quantitatively, with extant NRG calculations [21, 28] that provide
essentially exact numerical results for the problem. In the spin-fluctuation regime of strong
coupling a number of asymptotically exact results are obtained, in particular for the Kondo
scale characteristic of the SC phase and theAdyehaviour of the critical/.(r). Results

for the normal AIM [30] are moreover obtained smoothly from the limit> 0, where the
resultant description of single-particle dynamics includes recovery of the DoiSaofé-tails,

as well as characteristic low-Fermi liquid behaviour and the exponentiality of the Kondo
scale. We find in fact that the normal AIM constitutes in many ways just a particular case of
more generic behaviour characteristic of the 0 SC state, which we argue may be regarded

as a ‘generalized Fermi liquid’, in agreement with the conclusions drawn by Gonzalez-Buxton
and Ingersent [21] from detailed NRG studies. One manifestation of this is the prediction
that, for allr € [O, %), single-particle spectra characteristic of the SC state should acquire
a universal scaling form as the SC/LM phase boundary is approached, thus generalizing to
finite-r behaviour that is familiar in the context of the normal AIM [14, 15]; this and related
predictions of the present theory will be tested against NRG calculations in a subsequent
publication [31].

The paper is organized as follows. A brief introduction to the soft-gap AIM is given
in section 2, where two facets are highlighted. First, the non-interacting timit 0. Its
behaviour, in contrast to that of the normal AIM, is non-trivial: both SC and LM states arise, for
r < 1landr > 1 respectively, and with distinct signatures in the underlying spectral functions
[29]. Second, we emphasize the generalized pinning condition established by us previously
[29], wherebyA (w) = |w|" D(w) is pinned at the Fermi level = O for anyr andU where a
SC state obtains; and which represents a generalization of the corresponding condition familiar
for ther = 0 AIM where it is normally viewed as a consequence of the Friedel sum rule (see
e.g. [2]). Imposition of this spectral pinning as a self-consistency condition plays a central role
in the current work.

In section 3 we introduce the ‘two-self-energy’ description that underlies the present
theory. Such an approach is physically natural if one aims to describe the doubly degenerate
LM state; and, we would argue, is at least desirable if one seeks to construct a non-perturbative
theory that can simultaneously handle the possibility of both LM and SC states, and hence the
transition between them. As for the normal AIM [30], our approach to the interaction self-
energies starts from the simplest non-trivial mean-field approximation in which the notion of an
impurity local moment, determined self-consistently, is introduced explicitly from the outset:
unrestricted Hartree—Fock (UHF), as considered by Anderson in his original paper [1] on the
r = 0 AIM. The deficiencies of this static mean-field approximatper seare of course
severe; but it is in large part a physical understanding of them, considered in section 4.2,
that enables a subsequent many-body approach to be developed successfully. Moreover,
and in contrast to the normal AIM, even UHF is non-trivial for the soft-gap problem: as
shown in section 4.1 it gives rise for example to a phase diagram that, in predicting, for
all finite U, solelyLM states for any- > % concurs qualitatively with the results of NRG
calculations [21, 28].

Dynamical many-body contributions to the self-energies, over and above the Fock term
aloneretained at simple mean-field level, are detailed in section 5 for both SC and LM states. In
physical terms these embody coupling of single-particle excitations to low-energy transverse
spin fluctuations, and capture the dynamical spin-flip scattering required in particular to
describe the Kondo, or spin-fluctuation, regime. SC states are obtained via self-consistent
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imposition of the generalized pinning condition, the limits of stability of solutions to which

in turn give the criticalU.(r) for the SC/LM transition. In this way, as for the= 0 AIM

[30], the Kondo or spin-flip scalen, = om(r) arises naturally within the present approach,
and is found to be non-zero throughout the entire SC phase, vanishing continuously only as
the SC/LM phase boundary is approach&d~ Uc(r)—. ForU > U.(r) in the LM phase,

by contrastwm(r) = 0: as expected physically for a doubly degenerate state, where there is
no energy cost for a local spin flip.

Resultant phase boundaries between SC and LM states are considered in section 6;
including (section 6.3) their predicted one-parameter scaling behaviour in the regimes
U/D >» 1 and«1 (with D the bandwidth of the host spectrum or hybridization function),
and detailed comparison with extant NRG results [21, 28] (section 6.4). The evolution and
critical behaviour of the SC Kondo scale,(r) is considered in section 6.1. Particular
emphasis is given here to small« 1 where salient results can be extracted analytically;
and which is of evident importance in connecting to the normat 0 AIM, for which
the exact exponential asymptotics of the Kondo scale are correctly recovered.—A9,
the critical Uc(r) for the SC/LM boundary is found to bel/r, and the condition for the
Schrieffer—Wolff transformation [32] mapping the soft-gap AIM to the corresponding Kondo
model is thus satisfied. The critical exchange couplip@) for the soft-gap Kondo model
asr — 0 can thus be obtained from the present approach (section 6.2); and is found to be
given precisely by the scaling result obtained originally by Withoff and Fradkin [22], which
we argue is asymptotically exact.

Single-particle impurity spectra, and their evolution with interaction streagtinom
strong to weak coupling, are considered explicitly in sections 7 and 8. The ‘bdre are
discussed in section 7, on all energy scales and for both SC and LM states. Many-body
broadening of the high-energy Hubbard satellites, whose existence is well known for the
normal AIM (see e.g. [6, 30]), is argued to arise also in the soft-gap problem and shown to
be correctly recovered by the present approach; as too are the characteristi@ spectral
signatures of the SC and LM phases found in NRG calculations [28], nabn@y ~ |w|™"
and~ |w|" respectively. The behaviour of the spectra in weak couplihg; 0, is considered
in section 7.1. For < % where both thd/ — 0 and theU = 0 ground states are S@nd
for r > 1 where the ground state is found to be LM for&ll> 0, the theory is shown to be
perturbatively exact to (and including) second ordeViabout the non-interacting limit. For
% < r < 1 by contrast, thé/ > 0 ground state is found to be LM but the non-interacting
ground state is SC [29]; and the natural breakdown of conventional perturbation thébiy in
clearly evident in the non-analyticity (i) of the conventional ‘single’ self-energy &— 0.
Explicit comparison to single-particle spectra obtained from NRG calculations [28] is made
in section 7.2, and excellent agreement is found.

Finally, we consider in section 8 the spectral functioh@) = |w|"D(w) in the SC
phase—'modified’ to remove thiew|™" divergence at loww that is symptomatic of the SC
state, and which is entirely unrenormalized by interaction effects [29]. Altag are found
to exhibit familiar characteristics: they are pinned at the Fermi levek 0, and contain a
generalized Kondo resonance whose width is proportional to the Kondowggélgand thus
narrows progressively d$is increased towards the SC/LM phase whegér) vanishes. This
is just as found for the normal AIM (see e.g. [2, 14, 15]) where the critiddlAg),—¢g = oo
(reflecting the fact that the SC/LM transition here coincides trivially with the atomic limit).
Moreover, as for the = 0 AIM, we find generally foranygivenr < % thataslU — Uc(r)—,
the A(w) becomes a universal function af/wn(r); with a scaled Kondo resonance that
exhibits characteristie-dependent low-frequency behaviour, as well as Doniédm}i’c tails
in the ‘wings’ of the spectrum fob /wm(r) 2 1.
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2. Background

We begin with some necessary background, particularly in relation to the non-interacting limit
(section 2.1), and the generalized spectral pinning condition characteristic of a SC state with
U > 0[29] (section 2.2).

With the Fermi level taken as the energy origin, the Hamiltonian for the ;lﬁnderson
model is given in standard notation by
I:I = I:Ihost"' I:[impurity + I:Ihybridization

= Zeknka + Z(Ez +3 U”z a)nla + Z Vlk(c Cko t cko‘clﬂ') (21)

with ¢, the host dispersiori/;;, the hybridization and; the impurity level; for the symmetric

Anderson model considered hetge= —U /2 with U the on-site interaction.
We focus on the zero-temperature single-particle impurity Green function, defined by

G(1) = —i(T{cio (e}, }) = G* (1) + G~ (1) (2.2)

and separated for later purposes into retarded and advanced componentd: isifioeariant
underoc — —o, G is naturally independent of spia, We add that while the primary physical
content ofG (w) is that of single-particle dynamics, analysis of it will also enable identification
of the phase boundaries between SC and LM states, as detailed in sections 5 and 6.

2.1. Non-interacting limit
For U = 0, the impurity Green functiog(w) is given by

glw) = [a) +insgnw) — A(a))]_1 in — 0+ (2.3)
and is determined by the hybridization function

_ |Vik|? _ o
Aw) = ; o et isone — AR@ —isgn@A@) (2.42)

with
Ai(@) =7 Y |ViklP8( — e). (2.40)
k

We consider a symmetric hybridizatioh(w) = —A(—w), and in particular a power-law form
Al(w) = Aolw|"8(D — |wl) (2.5)

with » > 0 and bandwidthD (6(x) being the unit step function). A pure power-law hybrid-
ization, while naturally not realistic on arbitrary scales, captures the requisite leshraviour

in the simplest way; moreover, as is familiar from the usuat 0 Anderson model (see
e.g. [2]), one expects impurity properties to be controlled primarily by thedowehaviour
and largely independent of detailed band structure. Note also from equatidf {{2a4 to
specify A (w), the{V;;} and host eigenvaludg;} do not require separate specification; but
that for the particular case of constant = V (considered in section 6.2}, (w) and the host
spectrumpnosiw) are simply related:

Al(@) = 7V pros®). (2.6)
The real part of the hybridizatiom\r(w), follows from a Hilbert transform, namely

dw 1
Fr(w) = f - Fl(wl)P< ) (2.7)
oo T W — w1
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with F = A; and hence

r

_r
YAy
where a principal value is henceforth understood. We shall require explicitly only the low-
behaviour ofAg(w), given from equation (2.8) (for any> 0) by

~ 7N\ .. 2D ol ER%
Ar(w) = —sgnw)Ag {tan<§r>|a)| + py— D +0 |:<3> :|} . (2.9)

Notice from equation (2.8) that the wide-band limit— oo, as commonly employed for the
normal Anderson model = O (see e.g. [2]), can be taken fo< 1; and for this case,

2 [P/l
AR(®) = 5GT0) Mgl /0 d (2.8)

Ar(®) = —SgN®) Ao tan(%r>|w|’ Vo

Given the hybridization function, the non-interactin@) = Reg(w) — in sgnw)do(w)
follows directly from equation (2.3). All relevant impurity properties are determined
by the spectral densityly(w), including ‘excess’ thermodynamic functions induced by
addition of the impurity, and local properties such as the impurity susceptigifity’) =
—gug(a(ﬁiz)/ahﬂh:o (with & a magnetic field acting solely on the impurity). Details are
given in [29]; here we summarize results relevant to the present work.

The key feature of the non-interacting limit is that LM states occur exclusively forl
and SC states for < 1; with clear signatures of the respective phases apparent in the single-
particle spectrurdp(w). Forr > 1 (LM), do(w) is given for|w| < D by

do(w) = q8(w) +dE(w) r>1 (2.1()

and contains both a discrete stateat 0, with poleweighty = [1 — (§ Ar/dw),—o0] * given
from equation (2.9) by
2AoD" 1
1_g4+2207 2.1

1 7 —1) (2.100)
and a continuum (or ‘band’) piea@(a)) ~ |w|"~? asw — 0. The pole contribution tdy(w)
is the characteristic spectral signature of the= 0 LM state. It produces [29] for example a
local susceptibilityx2(T) = (¢2/2) xcurie(T) asT — 0, i.e. limy_o T x2(T) = q*(gus)?/8:
the impurity spin remains unquenched, symptomatic of a LM stater: kot (SC) by contrast,
there is naw = 0 pole contribution andy(w) = dg(a)) is given asv — 0 by

|| ™"

b _
do(w) = [1+tarf((z/2)r)]

+O(low|*%) r<1 (2.11)

for anyr > 0, with a characteristitw|™" divergence for O< r < 1. In consequence [29],
limr_oTx2(T) = 0: the spin is quenched as occurs for the normal 0 Anderson model,
onereasonwhy the SC state may be regarded [21, 29] as a natural generalization of conventional
Fermi liquid physics.

2.2. SC state: spectral pinning

For U > 0 the impurity Green function; (w) = X (@) — im sgnw)D(w) (=—G(—w) by
particle—hole symmetry), may be expressed as

G(@) = [0 +insgno) — Aw) — Z(@)] " (2.12)
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where
Y (w) = Zr(w) — isgn(w) (o) (2.13)

is an interaction self-energy whose real/imaginary parts are related by the Hilbert transform
equation (2.7) withF = X. (Note thatX(w) is defined to exclude the trivial Hartree
contribution: from particle—hole symmetry the Fermi level remains fixe@ at O for all
U > 0 (and any-), whence the impurity charge = )__(1;,) = 1 VU and thus the Hartree
contribution of(U/2)n; = U/2 trivially cancelss; = —U/2.)

In [29] we have established conditions upbrw) for a SC state to arise féf > 0. These
are, very simply, thak (o) (and hencer(w)) should decay to zero as— 0 more rapidly
than|w|” (with r < 1), i.e.

Y (w) 020 ool A>r (2.14)

with A > r. In consequence, as follows directly from equation (2.12), the low-frequency
behaviour ofD(w) is that ofdy(w); hence from equation (2.11),

D(@) =’ || ™"

which is indeed the spectral signature of the SC state found in fihidRG studies [28].
Further, using

|imo|w|rD(w) = |im0|w|rd0(a)) (2.15)

and defining the modified spectral function

A(w) = |o|" D(w) (2.16)
equation (2.11) yields the pinning condition
m Ao [1+tarf((r/2)r)] A(w =0) =1 (2.16)

for all U andr where a SC state obtains. This result will prove central to our analysis in the
following sections. It encompasses as a special case the well known result for themnesial
Anderson model (see e.qg. [2]): that\oD (w = 0) = 1—the impurity spectrum is pinned at

the Fermi leveko = O for anyU where a normal Fermi liquid state obtains (in that case all

U > 0). Equation (2.16) generalizes the pinning condition to arbitraigr a SC state, and
reflects the fact that interactions have no influence in renormalizing the asymptotic behaviour
of D(w) asw — 0, again consistent with the view [21, 29] that the SC state constitutes a
natural generalization of Fermi liquid behaviour.

3. Two-self-energy description

Equation (2.12) merely defines a single self-enexgy), via a Dyson equation
G(w) =g(w) + g(w)E(0)G(w) (3.1)

that does not by itself enable a calculation of the impurity Green function. And while at
first sight it may invite a perturbative treatmentlihabout the non-interacting limit (where
G(w) = g(w)), there are two reasons to be wary of such an approach. First, the general
applicability of such is not obvious in the soft-gap problem: indeed, as discussed in [29],
there is evidence to suggest that foe [%, 1], perturbation theory i/ is inapplicable as

U — 0 (a point to which we return again in section 7.1). Second, and more generally, even
if a perturbative approach i&i is possible for sufficiently low/—as it is known to be [29]
forO<r < % andr > 1—straight perturbation theory in the interaction strength naturally
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cannot capture the transition between SC and LM states. For this, one requires an inherently
non-perturbative approach that is capable of describing both the doubly degenerate LM state
and the SC (or generalized Fermi liquid) state, and hence the quantum phase transition between
them.

To this end, and noting that direct calculation of a single self-energy is not sacrosanct, we
follow recent work [30] on the normal = 0 Anderson model and adopt a two-self-energy
description, with the impurity Green function expressed formally as

G(@) = 3[G1(0) + G ()] (3.2)
where
- -1
Go () = [0+ insgne) - A©) — £,()] (3.3)
with interaction self-energie¥, (w) (ando = 1/| or +/=). Such a description is

self-evidently natural for describing a doubly degenerate LM state and, more generally, is
appropriate if one seeks to construct a non-perturbative theory starting from either the atomic
limit (V;, = 0, whereX, (w) = —10U) or an unrestricted Hartree—Fock (UHF) mean-field
approach. It is the latter strategy that we adopt and, although the deficiencies of a simple
UHF approach bytself are significant, use of it as a starting point for a genuine many-body
treatment will be shown to yield a rather successful description of the soft-gap problem, as
well as the normat = 0 Anderson model considered hitherto [30].

For the symmetric case under consideration, particle—hole symmetry implies

Gi(0) = —G | (—w) (3.4)
(and thus alsoD;(w) = D (—w) for the corresponding spectral densiti®s (w) =
—m~tsgnw) Im G, (w)); from which, sinceA () = —A(—w), equation (3.3) implies

S (w) = —%, (—w). (3.5)

In consequence, from equations (3.2) and (2.12), the impurity Green function and single self-
energy satisfy the familiar conditions

G(w) =—-G(—w) Y(w) = —Z(—w). (3.6)

Equations (3.4)—(3.6) merely express a basic symmetry, which must of course be satisfied by
any approximate theory; and equation (3.5) in particular shows that it is sufficient to consider
only one of theZ, (w), say ;(w). Once a theory fo;(w) has been developed, direct
comparison of equations (3.2), (3.3) with equation (2.12) permits, if deskéd) to be
determined, via

5[Z1(@) — Ty (—0) + 28(0) 24 (@) T4 (—)]
1-38@[Z1(0) — £ (-0)]
whereg(w) is the non-interacting Green function, equation (2.3).
The ¥, (w) are obviously not calculable exactly, but diagrammatic perturbation theory
based upon a UHF mean-field state can be employed to develop suitable (and indeed asymp-

totically exact) approximations as detailed in section 5. To this end it is helpful to separate the
full interaction self-energies as

Y (w) = (3.7)

S0 (0) = —%Uw + 3 (o) (3.8)

Wherei%mm is the purely static Fock contribution which alone survives at UHF level (with
|| the local moment magnitude); and where & w)—to which the symmetry equation (3.5)
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also applies—contains the dynamics that, at low frequencies in particular, are naturally central
to the problem.

Before proceeding we note that conditions upiyiw) for a SC state to arise féf > 0 are
readily established, independently of any specific approximation. Asin section 2.2 we consider
explicitly » < 1 (since a SC state must be perturbatively continuable from the non-interacting
limit and forr > 1 theU = 0 ground state is a LM one [29]). The requisite conditions
upon £, (w) are identical to those of section 2.2 fBi(w): the real and imaginary parts of
¥, (w) must decay to zero as — 0 more rapidly thamr ~ |w|". From equations (3.2),

(3.3) thew — 0 behaviours oG4 (w), G (w) andG(w) then coincide, and reduce to that of
the non-interacting limit; equation (2.15) is thus satisfied, and in consequence the generalized
spectral pinning condition characteristic of the SC state, equationi2 fblows.

Finally, notice that a necessary condition for a SC state to arise iSSthius = 0) = 0
(which from equation (3.5) is independent of spif); or equivalently, from equation (3.8):

1
(@ =0) = SUlul. (3.9)

The practical importance of this condition will become apparent in section 5, for while
necessary but natpriori sufficient for a SC state, its imposition as a self-consistency condition
underlies our analysis of the SC phase, in direct parallel to our previous work on the normal
r = 0 Anderson model [30].

4. Mean field

We start from the simplest non-trivial mean-field approximation, namely UHF as considered
in Anderson’s original paper [1]. This has two essential characteristics: that the notion of an
impurity local moment 4) is introduced explicitly from the outset; and that it is determined
self-consistently, vigw = (n;4 — 7;})o (with (---)o an average over the mean-field ground
state). There are three reasons for first considering this superficially simple one-body approx-
imation. First, the UHF Green functions form the bare propagators for the dynamical many-
body approach developed in sections 5ff. Second, a physical understanding of its limitations,
often alluded to but rarely exposed, underpins what is required to go successfully beyond
it. Finally, we show that even UHF by itself has virtues, producing a number of non-trivial
predictions that are in qualitative accord with sophisticated approaches; notaliyjhiai
states arise for > % in agreement with detailed NRG calculations [21, 28].

The essence of UHF is that the self-energiggw) (equation (3.8)) are purely static: only
the Fock term is retained, arﬁg = —%UU|/,L|. The impurity Green function at UHF level,
Go(w) = ReGo(w) — i sgnw) Do(w), is thus

Go(w) = % [G1(@) + G, (»)] (4.1)
where

-1
Gy (@) =[w+inSgr(w)+%UluI —A(w)} 4.2)

with corresponding spectral densitiB§ (o) = —7 ! sgnw) Im G, (w) given by
[n+A(@)] 7t
[+ (6/2)U|p| — Ar(@)]? + [0+ A1(@)]*

D(w) = (4.3)

Quite generally there are three energy scales in the problem, naré/éiy’), U and D; we
choosetorescale in terms@ﬁ/ 4= defining for later purposes a reduced interaction strength
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and bandwidth respectively by
U ~ D
D =

U= i (4.4)
A(l)/(l—r) A(l)/(l—r)

as well as a dimensionless frequengy;- w/Aé/(l”).

4.1. Mean-field phase boundary

The local momentu| is of course found self-consistently, as described belowu [If= 0
thereby arises, then from equations (4.2), (4.3) the UHF propagators and spectra reduce to
those of the non-interacting limit summarized in section D1w) = do(w). If || # O by
contrast, equation (4.3) (with equations (2.5), (2.9/fp&) show the low-frequency behaviour
of D?(w) to be

DO(e) U0 B0 45

- TP (4.5)
independent of spigi. Equation (4.5) thus gives the lowwbehaviour of the full UHF spectrum
Do(w) = 3 [D(T)(“’) + D?(a))]; and we note immediately th&t(w) ~ |w|" isinfactthe spectral
hallmark of the LM regime obtained from finitg-NRG calculations [28]. We also add in
passing that for finite bandwidtP, and regardless df/, there are always discrete (pole)
contributions to theD%(w) outside the bandw| > D. These are included in all specific
calculations (section 6ff), but are of little importance to the problem and are not discussed
explicitly in what follows.
At pure UHF level the local moment is determined self-consistently from

0
| = / dw [D2(w) — DY (w)]. (4.6)
Noting from equation (4.3) that thB° (») depend orU and|u| solely via the combination
1

equation (4.6) is thus of form

2x
(ul =) 7 = f (). (4.8)

The UHF phase boundaty, = Ud(r) is now readily ascertained from the— 0 behaviour
of f(x), noting thatx — 0 may correspond either to (ijx| — 0 at some finite critical/,
as one might naively anticipate; or (li), = 0 and|u| either vanishing or remaining finite as
U — 0. With

x—0
fx) ~ x" (4.99)
and hence from equation (4.8)
1.
o (4.9)

the above possibilities are distinguished by different values of the expandhin = 1 then
U. is finite and given by

2 _ (af <x)> — (4.108)
Uc 0x x=0
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If by contrast O< m < 1, then equation (44 showsU, = 0 and

| V=0 gl a-m 0<m<1 (4.10)
vanishes a#/ — 0. Finally, if m = 0, thenU, = 0 but

1l "= finite m =0 (4.1@)

tends to a finite limit ag/ — O+.

All three possibilities are realized in practice, as now summarized (details are given in
the appendix). For < %m = 1 results: there is a finite critical®(r) separating LM
states U > UQ(r), |u| > 0) from SC statesl{ < UQ(r), |u| = 0). Forr € (3,1) by
contrast, 0< m = (1 —r)/r < 1; whilem = 0 forr > 1. It follows directly that for
r< % both SC and LM states may arise, while for % exclusively LM states occur for all
U > 0. This is as found in finité# NRG calculations [21, 28]. It is moreover specific to the
particle—hole-symmetric case under consideration: for the asymmetric case, analysis of the
UHF equations yields a finite2(r) even forr > %; this is again in qualitative agreement with
NRG results [21].

The resultant mean-field phase boundary is shown explicitly in figure 1 for the wide-band
limit D = oo (which depends solely on the ratio = U/Ay*™"); for later comparison to
NRG results, the figure shows the critiesdU” /U (=U""1), versus-. Forr < % the critical
UO(r) is finite and given from equation (4.apusing equations (4.8), (4.6) and (4.3) by

2 _ _ﬂ/° 4 Ni@) [0~ Ar(@)]
U0~ 7w )a (o - Ar@)P+ A2

(4.11)

AU

LM

‘ ‘
0.6 0.8 1.0
r

Figure 1. Mean-field phase boundatpoU" /U). versus- (for the wide-band limit). For > %
solely LM states occur for alV > 0.

SinceAjr ~ |o|" asw — 0, the lowe behaviour of the integrand is|w|~%; the
integral thus converges for< % andU2(r) ~ (1 — 2r) asr — %—, producing the square-
root divergence in the phase boundary evident in figurAgt/” /U ~ (1 — 2r)~Y2,

Forr > % by contrast, even the simple mean-field analysis predicts solely a LM phase for
anyU > 0. Recall however that for the non-interacting lirbit= 0, the ground state is LM
forr > 1 but SC forr < 1 [29] (see section 2.1). Hence f§r< r < 1, there is a critical line
U.(r) = 0 ‘separating’ SC and LM states. This underlies why low-order perturbation theory

in U about the non-interacting limit is inapplicable fore [%, 1] [29] (see also section 7.1);
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and the subtlety of/ — 0 is already evident at mean-field level from the fact that the UHF
|| vanishes in a non-analytic fashion, namely

| U220 ya-n/@-1 e (%’ 1). (4.12)

Forr > 1 by comparison, the ground state is LM for &1l > 0; and|u| remains finite as
U — 0 (equation (4.16)). In fact, as shown in the appendix, the= 0+ limit of |u| is

lul =q :U=0+r>1 (4.13)

whereg (equation (2.18)) is precisely the weight of the = 0 pole in the non-interacting
single-particle spectrum(w).

Finally, we clarify the familiar remark that UHF issaatic mean-field approximation. In
one sense this is trivial: the self-energis(w) (equation (3.8)) are-independent at UHF
level, being given bE? = — 1o U|u|. Butthe correspondingingleself-energys (), defined
conventionally viaG () = [ + in sgnw) — A(w) — X (w)] %, is given from equation (3.7)
by

=" (@) = g@GUIuD? (4.14)

with g(w) the non-interacting Green function, equation (2.3). Thus, even at UHF Eue),

is w-dependentForr > 1 in particular, the leading low behaviour ofg(w) is given from
equations (2.3), (2.10) y(w) ~ ¢q/(w+in sgnw)). Hence, from equation (4.13), the leading
low-w behaviour ofzHF(w) astU — 0 is given by

w—0

u—o0 U?%q3 1
4 w+insgnw)
And simple thoughiitis, this resultis not trivial: it recovers exactly the leadingddyehaviour

of X (w) obtained [29] from second-order perturbation theor¥imabout the non-interacting
limit (which is applicable for > 1 [29]).

EHF(O))

r> 1 (4.15)

4.2. Deficiencies

Its virtues notwithstanding, the limitations of UHF by itself are of course severe. If the self-
consistent mean-field local momept| = 0, UHF reduces trivially to the non-interacting
limit; there is thus no hint of the low-energy Kondo scale symptomatic of theD SC phase
and evident in the generalized Kondo resonance appearing in the modified spectral function
A(w) = |w|"D(w) [29]. But the acute deficiencies of the simple mean-field approximation are
already evident in the UHF phase boundary of figure 1. From fitiitéRG studies [21, 28] it
is known that the critica\oU" /U vanishes linearly im asr — 0, i.e.Agc~rorU; ~ 1/r.
Forr = 0 this recovers the well known fact that the normal Anderson model is a Fermi liquid
for any non-zero hybridization strengty (or finite U), with a LM phase confined exclusively
to the atomic limit,Aq = 0. This is not however captured by UHF, which instead produces a
critical Ag/U = 1/z for r = 0 (see figure 1) and thus a spurious transition between the SC
(or Fermi liquid) and LM phases at a finite coupling strength.

More generally, the — 0 behaviour of the NRG phase boundary for the Anderson model
[21, 28] is indicative of that for the corresponding Kondo model as considered originally by
Withoff and Fradkin [22]; for since\o/ U « r asr — 0, the Anderson model can here be
mapped onto a Kondo model [21, 28] via the usual Schrieffer—Wolff transformation [32], with
an exchange coupling o V3/U. Thus, as found originally via poor man’s scaling for the
Kondo model itself [22], there exists an infrared unstable fixed poidt at » such that for
J > J. (J < Jo) the ground state is SC (LM). Clearly, however, no vestige of this Kondo
physics is captured at UHF level.
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The manifest deficiencies of the simple mean-field approximation naturally stem from its
static character, and in particular from the complete omission of dynamical spin-flip scattering
processes illustrated schematically in figure 2. Upon addition of, sgygmn electron to an
4-spin occupied impurity, two subsequent processes may occur. (a) Thejgdgadmay hop
off the site, leaving behind the originalspin. This is essentially elastic scattering; it is well
captured by UHF alone. (b) However, thespin electron originally present may also hop off
the site, leaving behind a spin flip on the impurity, the energy cost for the spin flip being of the
order of the Kondo scale. This process, involving correlated electron motion and dynamical
coupling of single-particle excitations to low-energy spin fluctuations, is entirely absent at
UHF level. Inclusion of such, to which we now turn, is however essential to circurallehe
limitations of the static mean-field approach outlined above, and in particular to recover the
correct physics of the Kondo (or spin-fluctuation) regime. On the other hand one should not
abandon UHF entirely, but rather use it as a starting point for a dynamical many-body approach;
use of it in this fashion is, as we shall show, necessary to ensure a successful description of the
problem for all» > 0 and from weak- to strong-coupling interaction strengths,

—t
¢\ @ﬁﬂ(a)‘elastic’
L e

%
(b) ‘spin-flip’

Figure 2. A schematic diagram of scattering processes as discussed in text.

5. Dynamical self-energies

The interaction self-energias, (w) consist, as in equation (3.8), of a static Fock contribution
(alone retained at mean-field level) plus the dynamical contrib®Eipfaw) on which we now
focus. The most important class of diagrams contributing t&thev), and that we retain in
practice, is shown in figure 3(a); mean-field impurity propagators (given by equation (4.2))
are denoted by solid lines, and the impurity interactiérby a wavy line. The physical
content of figure 3(a) is clear: having, say, addeg-spin electron to a-o-spin occupied
impurity, the latter hops off the impurity, generating in consequence an on-site spin flip, before
returning again at a later time; and where all ladder interactions of the resultant particle—hole
pair—reflecting the created spin flip—are included. This class of diagrams thus captures the
dynamical spin-flip scattering mentioned above (figure 2(b)), and known e.g. from poor man’s
scaling [33] to be essential in describing the Kondo limit of the normal0 Anderson model.

This is further evident from the equivalent recastingXf(w) shown in figure 3(b), which
translates to

© g
T (@) = UZ/ % G, (@ — )T (w1) (5.13)
oo 2mi
© g
2, (@) = U2 / % Gi (@ — )T (wy). (5.1b)
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(b)

(©)
(n*=

NI il i
- i e
i/ /f ] ]

Figure 3. (a) The class of diagrams f@&, (w) retained in the present work. Mean-field impurity
propagators are denoted by solid lines, the on-site impufityy a wavy line. (b) Equivalent
recasting, including ingoing/outgoing propagators, to illustrate the spin-flip scattering involved.
(c) The particle-hole ladder sum in transverse spin channell fdr, spins are reversed.

These embody dynamical coupling of single-particle excitations to low-energy spin
fluctuations, since the transverse spin polarization propagatorg I1-*—given as in fig-
ure 3(c) by the ladder sum of repeated particle—hole interactions in the transverse spin channel—
contain as will be shown the low-energy spin-flip scales that are the essehothtiie SC
and LM phases.

The transverse spin polarization propagators are given in turn by an RPA form

0
M) = 3 M) (5.2)

— U T(w)

with °TT(w) the bare polarization bubble (first diagram in figure 3(cJJ1*~ (w) is given
explicitly by

(> d
M (w) =i / % Gy ()G (01 — ©) (5.3)

while °TT~*(w) follows by interchanging the spin label$, <~ |; and a simple change of
variables in equation (5.3) gives

M (w) = MM (—w) (5.4)

which naturally applies also to the full*~ (w) /I1~*(w). Only one propagator, S&y1*~ (w),
need thus be considered explicitly; the other follows from it. Further, since the real/imaginary
parts of°’TT*~ (w) are related by the Hilbert transform

oM (@) = f o M (o) oMy
o T w1 — w— insgnw)

(5.5)
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we may focus on IfTT*~ (w). From equation (5.3), separatigg(w) = G} (w) + G, (») into
retarded/advanced components and using the Hilbert transform

0
G (w) = / dooy Dg (01)8 (£w1) (5.6)
w— wlztln

this is given by

2]
1 Im °I1* (w) = e(w)/ dwy DY (w1) DY (w1 — w)
T 0

0
+0(—w) / dwy DY (w1) DY (w1 — w) > 0. (5.7)
—|ol

Finally, note that equations (5.1) preserve—as they must—the particle—hole symmetry
Y, (w) = —X4(—w) (equations (3.5), (3.8)); as follows usigh (w) = —G,(—w) (equ-
ations (4.2), (3.4)) with equation (5.4) for thEs. In what follows we thus focus exclusively
on X, (w) which, using equation (5.4), may be written as

dw
5 (@) = U? / AT @)@+ (5.8)

and which we now consider separately for both SC and LM phases.

5.1. SC state

We begin with a brief overview of our approach to the SC phase, and give further details below
and in section 6ff. As noted in section 3, equation (3.9) constitutes a necessary condition for
a SC state to arise fdr > 0; we show below that it is also sufficient, and reduces to

1
2R=0) = EU|m (5.9)

(wherexR(w) = ReX, (w)). Ifthis equation is satisfied then the generalized pinning condition
symptomatic of a SC state, equation (2),6vill be satisfied. And the core of our approach

to the SC state is to enforce equation (5.9)—which refers to a single frequency, the Fermi
level w = 0—as a self-consistency condition. In practice, as forrtke 0 model considered
hitherto [30], this amounts to a self-consistent determination of the local mompégntor
equation (5.9) is of form

gU;x)=x (5.10)

whereg(U; x) = E?(w = 0) depends explicitly or/, and uponx = %U|M| (via the
dependence of the mean-field propagat@ré») uponx). With a chosen approximation for

¥, (w)—equation (5.8) in the present work—the modus operandi is clear: for giagwl a
chosenU, solve equations (5.9), (5.10) ferand hencep|; if a solution is possible one has

a SC state, and th& above which a solution is no longer possible gives the criti¢al)

for termination of the SC phase, i.e. the phase boundary between SC and LM states (on the
assumption, indeed found in practice (section 6), that solely LM states ariefot/;(r)).

An initial illustration of what results is seen in figure 4 where, fee 0.2 (and the wide-
band limit D = oc0), we show the resultant spectral density of transverse spin excitations,
Im IT*~ (w) versusp = w/AY ™" for 7 = U/AY*™ =9,10and 13. The inset to figure 4
shows for comparison the correspondmg 9mi*~ (w) associated with the bare polarization
bubble, shown explicitly fol7 = 13 only (since those for the othéfs differ insignificantly
from it). Two principal points should be noted. First, as one expectSIIiiT (w) consists
simply of a high-energy Stoner band centredior U|u| ~ 10*. For ImIT*~ (w) by contrast,
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Figure 4. ImI1*~ (w) versusao = w/Aé/u*” forr = 0.2 andU = U/Aé/(k’) = 9,10 and

13 (right to left); there are no further spectral features outside range shown. The spin-flip scale
&m (peak maximum) progressively diminishes upon increagingnd@, — 0 as the SC/LM
transition is approached. Inset: the correspondin@ It~ (w) for U = 13, showing the high-
energy Stoner band. Note the very different scales in the two figures.

itis seen that the vast majority of the spectral weight has been transferred tearésgnance
peaked at a characteristic spin-flip scalgthat is at least three orders of magnitude smaller
in the examples shown: this is essentially the Kondo scale characteristic of the SC state; it will

be investigated in detail in the following sections. Second, upon increésinghe SC phase,
wm progressively diminishes, and vanishes at the critiGét) (~15.8) where the resonance in
Im IT*~ (w) becomes an isolated polesat= 0 precisely; as discussed below and in section 5.2,
the latter is the characteristic signature of the doubly degenerate local moment state.
We now return to considering; (w), equation (5.8). In the SC phad&;~ (w) obeys the
same Hilbert transform a8IT*~ (w), equation (5.5); using this, together with
®dwr  Gy(w1)
() = DR LA 5.11
Gs (@) :F/;X,erla)—wlzbln ( )
equation (5.8) reduces to
* dw
2 (w) = U? / ?l IM T (@) [0(01)G] (01 + ©) +0(—01)G| (01 + ®)]. (5.12)

—00

Since IMG£(w) = 7 D2 (w)6 (+w) (see equation (5.6)), equation (5.12) yields
It (@) = ZR(0) — isgne) T} (@) (5.13)
where

||
) = 9(—0))sz doog IM T (w1) DY (01 + )
0

0
+0(w)U? f dewy IM IT*™ (1) DY (w1 + ). (5.1%)

—lo|
Im IT*~ (w) is given from equation (5.2) by
Im °T1*~ (w) (5.14)
[1— UReOT* ()] +[U Im OT1*~ ()| '

Im T (w) =



A local moment approach to magnetic impurities 1001

and is non-negative (as follows from equation (5.7)); so tdddsw) (equation (4.3)). Hence
T4 (w) > 0 as required by analyticity; arid} (w)/ =} (w) are related by the Hilbert transform,
equation (2.7), withF = X;.

To obtain the loww behaviour OfZ'T(a)) from equation (5.18), we require that foD?(w)
and ImIT*~(w). For the SC phasd/ Re°IT*~ (v = 0) < 1 (as discussed further below);
hence from equation (5.14), I~ (w) o Im °IT*~ (w) asw — 0, with Im°IT*~ (w) given by
equation (5.7). In what follows we consider explicitly the case where- 0 self-consistently,
for three reasons:

() This is naturally the case relevant to strong-coupling (lagesehaviour for any > 0;

in particular to the SC/LM phase boundary (section 6), to the asymptotic behaviour of the
Kondo scale (section 6) and to the consequent universal scaling behaviour of single-particle
spectra in the SC phase (section 8).

(i) The case whergu| = 0 (self-consistently) differs only in detail frofy| > 0; the main
conclusions reached below hold also fat = 0.

(iii) We consider the case ¢fc| = 0in section 7.1, where we show in particular that/as> 0
our description of the SC phase is perturbatively exact to (and including) second order in
U about the non-interacting limit.

From equation (5.7), using equation (4.5) 1of (w), the low-w asymptotic behaviour of
Im °IT*~ (w) is

w0 [ Ag T2
Im °I1*~ (o) “<° [—"2} B(r)|w|*? (5.15)
X
whereB(r) = /aT (1 +r)/[2Y*2T (3 +r)]; hence
IMI™ (0) x |o}*? tw— 0. (5.16)
The low-w behaviour ofE'T(w) then follows from equation (5.13, namely
(Z} () =) Zh(o) « o] ‘w— 0 (5.17)

with a prefactor independent of whether— 0+ or 0—; and from the Hilbert transform
equation (2.7),

=R =R =0 - yo (5.1%)
with y = —(9 2$(w) /dw)w—o given by
0 d 3!
VZ/ do ¢(2w)>0_ (5.18)
o T w

The full interaction self-energf; (w) = R (@) — isgn@) T} (@) is given by S, (0) =
—%U|M| + X4 (w) (equation (3.8)), so the low- behaviour ofi'T(a)) is again ~given by
equation (5.17); while if equation (5.9) is satisfied, the asymptotic behaviom‘ﬁ()f)) is
given from equation (5.18) by

fl?(a)) 20 —yw. (5.19)

Both £R(w) and X} (w) thus decay to zero as — 0 more rapidly tham g ~ |w|" for any

r < 1. These are the requisite conditions upan(w) for a SC state to arise fd7 > 0, as
discussed in section 3. Hendkthe basic self-consistency equation (5.9) admits a solution,
this is a sufficient condition for a SC state.
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An important characteristic of the SC state follows directly from the above analysis,
namely that as» — 0

(@) = 2 (0) = Z() ‘w— 0. (5.20)

That$, (w) = I, (w) to leading order follows directly from equations (5.17), (5.19) using the
basic symmetry equation (3.5); from this, using equations (3.2), (3.3) @) together with

the definition equation (2.12) of the single self-eneByyy), it follows that =, (w) = ()

asw — 0. Equations (5.17), (5.19) thus give the lawbehaviour ofZ (w), and encompass
as a special case the Fermi liquid behaviour characteristic of the narmealQ) Anderson
model, namelZ' (w) o« w?. As will be shown in section 5.2, the above behaviour is in marked
contrast to that characteristic of the LM phase.

5.1.1. SC state: stability condition.Before turning to the self-energy in the LM phase (sec-
tion 5.2), and to provide continuity to that discussion, we comment on the evolution in the
SC phase of the local momept| determined self-consistently from equation (5.9); and its
associated implications for the low-energy spin-flip seajgillustrated in figure 4.

From the Hilbert transform equation (5.5) appropriatel¥t (w) in the SC phase, it
follows that

Rell"™ (0 = 0) = /oo do IMI (@) _ (5.21)

o TT ||
which is positive definite since Ifi*~(w) > 0. ButIT* (w) is given by equation (5.2)
whence, since IR (v = 0) = 0,

Rell™ (w = 0) = Re°TT* (0w = 0)/(1 — U Re°TT*~ (w = 0)).

For the stability condition equation (5.21) to be satisfied<OURe °TT* " (w = 0) < 1
is thus required. And an explicit expression for R@*~(w = 0) is readily deduced
from equation (5.3), using equation (5.6) together with the ideritgw) — G, (w) =
=U|ulGy ()G, (w); namely

0
URe " (v =0) = % / do [D?(w) — D (w)] (5.22)
_J™ (5.220)
[

wheref (x) (x = %U|u|) is thus defined, and has been introduced in section 4.1. For stability,
| > f(x) is thus required; and sincé(x) may be shown to be a monotonically increasing
function of x = %U|M|, saturating to 1 as — oo (as is physically obvious), the condition
ln| =2x/U > f(x)thus amounts to

Il > | ol (5.23)
for any givenU in the SC phase; whetg@y| is given by
ol = £ (53U ol) (5.2%)
and from equation (4.8) is simply the mean-field (UHF) local moment (denoted from now on

by [1ol)-
Hence, for the SC state stability condition equation (5.21) to be satisfied, the local

moment|u| determined self-consistently via equation (5.9) must exceed the corresponding
UHF moment|up|. This is correctly found in practice upon solution of equation (5.9) using
equation (5.8) fo; (w) (as shown explicitly in figure 6 below); and is reflected in turn in the
spectral density of transverse spin excitations[ 1t (w), which (see figure 4) is characterized
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by a strong resonance centred on the low-energy spin-flip agate 0. But on increasing/

in the SC phase towards the critidal(r) above which solution to equation (5.9) is no longer
possible, the self-consistently determingd approachesuo| continuously from above and

om — 0 (figures 4, 6). AU = U¢(r) precisely,|u| = |uol andwny = 0. This is the transition
point: hereU; Re°IT*~(w = 0) = 1, and the resonance in I~ (w) becomes an isolated
pole atw = 0. The latter is the natural signature of the LM phase, since for a doubly degenerate
LM state with finite weight on the impurity there is no energy cost to flip a spin; it persists
through the LM phase, whefga| = |uol, and to consideration of which we now turn.

5.2. LM state

We begin by stating the result foI*~ (w) in the LM phase. It consists of a continuum contrib-
ution, denotedIT*~ (w), and arnw = 0 pole with poleweigh) > 0; specifically,

T (@) = ——2— +51" (@) (5.240)
w+In
with
,( 9 Re°IT* (w) -
0= [U (—) } > 0. (5.2%)
dw =0

Im STT*~ (w) is given by equation (5.14), and the real/imaginary part¥[of (w) are again
related by the Hilbert transform equation (5.5).

The pole contribution arises from equation (5.2) bt (w) because (i Re°IT*~ (v =
0) = 1inthe LM phase|@| = |uol), and (ii) the lowe behaviour of RETI*~ (w) is linear
in w:

w—0 1

o+
Re°TT* (o) “~ —+a)<—8 Re Il (w))
U w=0

S (5.25)

where

7 (O Re°TT™ (0) /0w) o = /Oo dow Im °TT"~ (w) sgn(w) /w?

is readily shown to be positive. The lawbehaviour of IfPTT*~ (w) is again given precisely by
equation (5.15), and for any> 0 decays to zero as — 0 more rapidly thamw. Hence, from
equation (5.2), the — 0 behaviour oflT*~ (w) is —Q/w with Q given by equation (5.24);
thes-function part of which pole is obtained by an analytical continuatior  +in, which
is unique since? > 0 and ImIT*~ (w) > 0 necessarily. Equation (5.24) thus results.

Using equation (5.24) in equation (5.8) fa (w), together with equation (5.11), gives
the basic form for=, (w) in the LM phase:

Tt (w) = QUG (w) + 54 (). (5.26)

The first term, arising from the pole contribution 0"~ (w), controls the loww asymp-
totics of £;(w) as shown below. The secondx;(w), is given by equation (5.8) with

I*~ — STI*~, and by precisely the same argument as was used in section 5.1 is given
by equation (5.12) with Inil*~ — Im SII*~; hence, as in equation (5.13L;(w) =
Szﬁ(w) - isgn(a))SE'T(a)) with SE'T(w) > 0 given by equation (5.13. And since

G, (@) = Reg, (») — isgn(a))n'Di)(a))@(—a)) it follows that X4 (w) in its entirety is given

by equation (5.18); with =} (w) > 0 as required by analyticity, andY/ =} related by the
Hilbert transform equation (2.7)ZJ'T(a)) is given explicitly by

(Z} (@) =) Zh (@) = 1 QU*DY ()0 (—w) + 5L} (o) (5.27)
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the low-w asymptotics of which we now consider.

The o — 0 behaviour ofSE'T(w) is obtained from equation (5.2Bin parallel to
the corresponding analysis of section 5.1. ™ (w) is given by equation (5.14), with
Im °IT*~ (w) given by equation (5.15) and R&I*~ (w) given by equation (5.25); and since
U Re°TT*~ (w = 0) = 1, equation (5.14) thus gives il *~ (w) « |w|¥ ' asw — 0. Hence,
usingD?(a}) ~ |w|" asw — 0, equation (5.13) yields

SEh (@) o o> w — 0. (5.28)

But sinceD?(a)) & |w|" asw — 0 (equation (4.5)), it is the first term in equation (5.27) that
controls the loww behaviour ofE'T(a)) for anyr > 0 (and it is only forr > 0 that a LM

state arises, as will be shown in section 6). It can moreover be shown that the poleweight
Q (equation (5.28)) is given simply byQ = |uo|?; hence, using equation (4.5) the— 0
behaviour on#(w) = i'T(w) in the LM phase is

@) 2% 4a0lol 6 (~w). (5.29)

Ei(“’) = E'T(—w) follows directly by symmetry and we note that in contrast to the case for
the SC phase (equation (5.20)); (w) and X (w) do nottherefore coincide to leading order
asw — 0, the physical significance of which will be discussed in section 8.

The corresponding real paﬁ?(w), and hencé:?(w) = —1U|upol + E?(w), follows by
Hilbert transformation. Here we simply note tlﬁﬁ(a) =0) < %U|,uo| is found throughout

the LM phase whence, in contrast to the case for the SC phase (equatiori($(9)); 0) <O.
This, together with equation (5.29), enables the towehaviour of the full single-particle
spectrumD(w) = —n~tsgnw)Im G(w) to be obtained; for from equations (3.2), (3.3),
D(o) = 3[D;(w) + D, (»)] with D, (w) given asw — 0 by

w:O [A|((1)) + E(Iy (a))]
7[ER=0]""
And sinceE?(a} =0) = —Z?(a) = 0), it follows directly using equation (5.29) that

D(w) “=° %m’. (5.30)
[ 2R (0 = 0)]

The characteristic lovw spectral signature of the LM phase found in NRG calculations
[28], D(w)  |w|", is thus recovered; and we add that equation (.80Ids for the LM state
regardless of whether < 1. For the particular case of > 1 however, equation (5.3Dis
readily shown to be asymptotically exactds— 0. Here,i?(O) is dominated by the Fock
contribution of—%U|Mo|; and as discussed in section 4 (equation (4.13) and the appendix),
ol — g asU — 0, with g (equation (2.18)) the weight of thew = 0 pole in the non-
interacting single-particle spectruf(w). Hence as/ — 0:

Dy (w) (5.3()

|| U —0,r>1 (5.31)

This is precisely the result obtained by us hitherto (equation (5.12) of [29]) using straight
second-order perturbation theorylirmbout the non-interacting limit, which is itself applicable

for r > 1 (but not for% < r < 1[29]). Note that this result is not captured correctly at pure
mean-field level alone which, from equation (4.5) wiithy| = ¢, differs by a factor of 3 (the
presence of which reflects the fact that equation (5.29):1‘grw) asw — 0 is independent

of U). That equation (5.31) is correctly recovered as a limiting case of the present theory is
thus a non-trivial consequence of the local moment approach.
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Finally, the loww behaviour in the LM phase of the conventional single self-energy
3 (w)—defined by equation (2.12)—may also be deduced from the above asymptotics. We
consider explicitlyr < 1 (the case- > 1 will be discussed in section 7.1). Consider the
Hilbert transform equation (2.7) fdf (w) = Fr(w) — i sgn(w) Fi(w). If the w — 0 behaviour
of Fi(w) is

F(@) “=° ajwl (5.32)
with —1 < A < 1, the lowew behaviour ofFr(w) is readily shown to be
Fr(@) “=° —sgnw) tan(%)\) Fi(w). (5.32)

With Fi(w) = 7 D(w) given asw — 0 by equation (5.38), ReG(w) = Fr(w) thus follows
directly; and from equation (2.12% (w) = w+in sgnw) — A(w) — G~ 1(w) is in consequence
given asymptotically by

SR(w) “~° sgnw) tan(%r) s (w) (5.33)
with
o [SRw =0T
() “=° w co§<%r>|w|" r<1 (5.3)
0

This divergent behaviour oE(w) asw — 0 in the LM phase—which as just seen is a
direct consequence @ (w) x |w|" asw — 0—is in marked contrast both to that Bf, (w)
(equation (5.29)); and to the behaviour Bfw) in the SC phase (equations (5.17), (5.19),
(5.20)) where, as befits a generalized Fermi liquid statéw) vanishes at the Fermi level,
w=0.

6. Statics

We now consider the ramifications of the local moment approach (LMA) developed in the
preceding sections, beginning with ‘statics’; dynamics, in the form of single-particle excitation
spectra, will be investigated in sections 7 and 8. Specifically, we consider here:

(i) The phase boundaries between SC and LM states, including their predicted scaling be-
haviour (section 6.3) and quantitative comparison with NRG results [21, 28] (section 6.4).
As mentioned in section 4, the problem is characterized generally by two dimensionless
material parameters: the reduced interaction strerigith; U /Aé/ =" and bandwidth
D = D/AJ™"; or, equivalently, by andU/D. We seek the criticall(r) versusr
phase boundaries, as a functionlofD.

(ii) The evolution, and critical behaviour, of the central low-energy spin-flip (or Kondo) scale,
wm, that is symptomatic of the SC state and was discussed briefly in section 5.1 (see fig-
ure 4); this is considered in section 6.1.

(i) The relationship (section 6.3) between the soft-gap Anderson model and the correspond-
ing Kondo model in the strong-coupling (lar@&-regime [21, 28].

Particular attention will be given throughout to the behaviour of physical properties at low
which is of evident importance in connecting to the ‘normal’<£ 0) Anderson model; and

for which the salient results, of which the most important are asymptotically exact, can be
extracted analytically.
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To motivate our subsequent discussion, we begin with a phase diagram obtained from the
LMA as detailed in section 5.1, via the limits of solution to equation (5.9) appropriate to the
U > 0 SC state. Figure 5 shows the resultant critisgl” /U (=U"~1) versusr, obtained
strictly for the wide-band limitD = oo (but, as shown in section 6.3, coincident in practice
with that forU/D < 0.1); the inset shows the low-< 0.1 behaviour on an expanded scale,
and the main figure includes for comparison the static mean-field (UHF) result obtained in
section 4.1 (figure 1).

0.5

0.05
S e
Sy 0.25 r oo L“ — |
DO 0.00 0.05 0.10
<
LM
0 . . .
0 0.25 0.5 0.75 1
r

Figure 5. The LMA phase diagramAoU" /U)¢ = U’ 1 versusr (wide-band limit); forr > z,
solely LM states occur for all > 0. The mean- fleld phase boundary is shown for comparison
(dashedline). Inset: < 0.1 behaviour on an expanded scale includingthe 0 Kondo asymptote
(dotted line) ofrr/8 (see section 6.1, equation (6.10)).

As seen from figure 5, the smailbehaviour of the phase boundary differs radically from
that of UHF, which yields a spurious SC/LM transition even fo= 0. The LMA phase
boundary, by contrast, vanishes linearlyriasr — 0, as found in NRG studies of both the
Anderson [21, 28] and Kondo [22, 27] models; the precise fori@f) asr — 0 will be
established in section 6.1. For the normak 0 Anderson model in particular, the LMA
correctly recoverg§Aq/U). = 0: the LM phase is here confined entirely to the atomic limit
Ao = 0, and for allAg > 0 the system is a normal Fermi liquid with a strong-coupling Kondo
scale whose asymptotics within the LMA will be obtained analytically in section 6.1 from the
limit » — 0, and shown to coincide with that arising from scaling and the Batisatz Upon
increasing from zero the critical\oU" /U departs quite rapidly from linearity, turns upward
and then terminates at= % The latter behaviour is different from that arising at mean-field
level (where the boundary curve diverges-as- %—; figure 1), but has been reported in an
NRG study of the Kondo model [27]; we return to this issue when making detailed comparison
with NRG results in section 6.4.

One small but important point should be noted regarding the LMA phase boundaries: the
sameUc(r) is correctly obtained whether one approaches the boundary from the SC phase
(U < Uc(r)) orthe LM phasel(] > Uc(r)) Recall the statement above tha{r) is obtained
from the limit of solutions to equation (5. 9)E—R(a) = 0) = O—appropriate to th& > 0

SC state; such that fay > Uc(r), i?(O) = 0 cannot be satisfied self-consistently. As
mentioned in section 5.2, we find by contrast tﬁéﬁ(O) < 0 throughout the LM phase. For
the samdJc(r) to arise coming from the LM phas#, > Uc(r), thus require£¥(0) — 0— as
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U — U.(r)+ (on the assumption of continuity). This is indeed precisely as found in practice.
The final qualitative feature of the phase diagram shown in figure 5 is that f:or%

solely LM states occur for all > 0, as is indeed found from NRG studies [21, 28] and seen

already at mean-field level (figure 1). Here we find, consistently,i]fab =0) < Ofor all

finite U, and vanishes only & — 0 (where the interaction self-energy is of course zero by
construction).

6.1. Strong-coupling asymptotics

We now consider the asymptotic behaviour of the SC phase in the spin-fluctuation regime of
strong coupling (meaning largé). From the phase diagram figure 5, this formally entails
consideration of the important limiting behaviour~ 0 (whereU.(r) — o0), since charge
fluctuations can strictly be neglected onlylas—> oo; although in practice the results obtained
below naturally hold over a finiterange. Our aim is to obtain the critic&l(r) and, relatedly,

the behaviour of the low-energy spin-flip or Kondo sealg(r) asU — U.(r)— from the SC
phase. No restriction is imposed on the bandwidthand the impurity leved; = —U /2 may

lie within or outside the band; to encompass which we definesed in the following, by

A = min [D, %} . (6.1)

The key to extracting the strong-coupling asymptotics naturally ligs;i@w), given for
the SC phase by equation (5.12); and in particulaEﬁ{w = 0), whose largd7 form is
readily deduced from two properties of the transverse spin polarization propagdidr (i)
(itself illustrated in figure 4). First, that in strong coupling the spectral weight ditm(w) is
confined entirely to frequencies> 0 (as already evident in figure 4), and in consequence the
first term on the right-hand side of equation (5.12)2&@) = 0) is dominant in determining
its asymptotics. Specifically one finds

food—“’ ImI* (o) - 1 (6.2)
0 T

in strong coupling, which behaviour reflects physically the saturation of the local moment,
lu| — 1: it is straightforward to show, and physically rather obvious, that the moment
saturates fo\| (w = 1) /|e;] K 1;i.e.

U
5 > Boi. (6.3)

Second, as illustrated in figure 4, the strong resonance [fi'in{w) occurs on the low-energy
spin-flip scalewn, that diminishes rapidly with increasirlg and vanishes a8 — Uc(r)—
from the SC phase. Ifi*~(w) is thus in practice non-zero only on the scalewsqf, and on
scales of this order Rg (w) is a slowly varying function of frequency. Hence, the strong-
coupling behaviour oETR(a) = 0) is given asymptotically from equation (5.12) by

2w =0 ~U? Reg;(wm)/o % IMTT* (1) = U*ReG (wm). (6.4)

The U-dependence ofv,(r)—and in consequence the criticél.(r)—can now be
determined from equation (5.9), which (as discussed in section 5.1) ensures that the generalized
spectral pinning condition characteristic of the SC state, equation (2.16), is satisfied; for in
strong coupling, whergu| — 1, equation (5.9) reduces using equation (6.4) to

1
U*ReG| (wm) = U (6.5)
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This can be solved fapy, (r) once R, (») is known, and to which we now turn.
Reg| (w) is given from equation (5.6) by the one-sided Hilbert transform

0 1
Reg (w) = / deos Dg(wl)P(w = wl) (6.6)

whosew — 0 behaviour is dominated by that dﬁ‘f(wl) asw; — 0, given generally by
D?(wl) ~ (Ag/mx?)|w1|" (equation (4.5)) withe = %U|/L|; and from the latter alone it can
be shown that the asymptotic behaviour of Refw) — G, (0] is given exactly for < 1 by

00+ A
Re[g] (w) — G, (0] v _x_ZO sin (7rr)

lw|” + O(lw]) (6.7)

although this by itself does not give B¢ (w = 0). An approximation to R, (») that
correctly captures this asymptotic behaviour is

0
Reg (@) “=° 29 [ duy |a)1|rP< L ) (6.80)
XS J_)0 w— w1
where we have introduced a high-energy cut-off of ordet min[D, U/2]. We emphasize

that the specific cut-off used is wholly inessential to the following arguments: the important
point is that the prefactor to the integral is precisaly/mx2. Evaluation of equation (648

for w > 0 gives

w—0 Ag ()J' T

Reg; (0 *<° 25 (% - ool ) + Odoh (6.)

X2
use of which in equation (6.5), with= 1U in strong coupling|| — 1), yields
8Ao A b g
U=—————o, ] 6.9
7 (r sin(rr) wm) (6-:9)

The criticalU.(r), wherewy, vanishes, follows immediately from

AoA" Tr
= 6.10a

().~ % 6129
(and of course holds asymptoticallyras> 0 whereU.(r) — oo); equivalently, in the reduced
unitsU = U/Ag Y andD = D/AY ",

(.00 _ 6109

U ¢ 8

yielding in either case

~ 8

Us(r) ~ — (6.11)

or

asr — 0. The behaviour equation (6.10) is evident in figure 5 (inset) appropriate to the
wide-band limit, where the criticahoU” /U = U’"~! determined by full numerical solution

of equation (5.9) is compared to the smaltesultzr/8. The latter is indeed seen to be
asymptotically approached as— 0, which behaviour is reached in practice fors 0.02 (a
feature that we compare to NRG calculations in section 6.4); we also add in passing that the
asymptotic region of linearity in widens upon introduction of a finite bandwidih, as will

be shown in section 6.3.
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ForU < U.(r) in the SC phase, the spin-flip or Kondo scalg likewise follows directly
from equation (6.9), being given as— 0 by

1/r
on(r) R0 A [1_ Ulfr)} (6.123)
1/r
=A|:1—r U ] (6.12)
8AQA”

and vanishing a& — U.(r)— with the characteristic exponentifor r > 0; while the limit
of r = 0 yields

. U
wm(r = 0) = min [D, E] eXp<_STAO> (6.13)

which is the Kondo scale characteristic of the normal Anderson model and is exponentially
small in strong coupling. The prefactér,= min[D, U/2], merely reflects the high-energy
cut-off used in equation (6a8; butthe exponent of 7 U /8A¢ is exact, agreeing precisely with

the result obtained from the BethesatZ34] for the wide-band limit of the = 0 Anderson
model and, more generally, with poor man’s scaling [33] (see e.g. [2]). Note moreover that
recovery of this exponent hinges on the asymptotic validity of equation (6.10) for the phase
boundary as — 0, which we likewise believe to be exact.

Finally, while the results above are strictly validias> 0, the exponent of A& for the
vanishing of the Kondo scalen(r) asU — U.(r)— is found to hold generally within the
present LMA. Figure 6 shows the numerically determingd= wm/Ay """ versusU for
r = 0.2 (in the wide-band limit); and & — U.— ~ 15.8, careful numerical analysis shows
wm ~ [1—U/U®. ForU > U, in the doubly degenerate LM phas&, = O (as indicated in
figure 6); but is nonetheless ‘present’, giving rise to¢he: 0 pole in ImIT*~ (w) throughout
the LM phase (section 5.2) and in consequence to the IeadingQérﬁgJ(a)) contributing
to the LM self-energyX, (»), equation (5.26) (whose existence is in turn responsible for

0.90
0.002
- m
m 0.70
0.001
0.000 0.50

Figure 6. Forr = 0.2, the spin-flip/Kondo scalém, = wm/Aé/(l_” versud/ = U/Aé/(l_” (left-

hand scale) in the vicinity of the SC/LM transition; and the local morlnemersusf] (right-hand
scale, solid line), compared to the mean figlg| (dotted line). A/ — Uc—, &m ~ [1-U/0%
andoy = 0 in the LM phaselU > Uk.
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e.g. the asymptotically exact result equation (5.31)). Figure 6 also shows the evolution of the
self-consistently determined local momént asU is increased towards and through(r),
together with its mean-field counterpétty|, and illustrates the discussion of section 5.1.1;
specifically thafu| > |10l in the SC phase, withu| — |uol+ asU — Ue—.

6.2. Connection to the Kondo model

We comment briefly on the connections to the soft-gap Kondo model, which itself has been
studied extensively by NRG [26, 27], poor man’s scaling [22] and l&¥geean-field methods
[22]; and to which the results of the previous section are clearly related: equation (6.3) isjustthe
condition for applicability of the Schrieffer—Wolff transformation [32] mapping the Anderson
to the Kondo model; and from equation (6a}@ manifestly satisfied for « 1 as the SC/LM
phase boundary is approached.

The Kondo Hamiltoniarflk = Hhoest+ H,_4 consists of the host band contribution (equ-
ation (2.1)), with spectral density

Prosf{w) = Clo|"0(D — |o|) (6.14)

and the s—d interaction
. 1 o . .
Hs g = EJ Z I:CZTck’iSi + c,tick%S;' + (CZTCk’T - czickw)Sz]
kK

with an exchange coupling constat,given from the Schrieffer—Wolff transformation in the
particle—hole-symmetric case by = 8V2/U (where a constant;;, = V is taken). From
equations (2.5), (2.6) and (6.14)? is related to the hybridization parameter of the Anderson
model byAg = 7V?C, whence

8 A
J=—=0 (6.15)
nC U
The critical value ofAq/U at the SC/LM phase boundary is however given within the
LMA by equation (6.1Q) asr — 0; hence as — 0 the criticalJ.(r) in the Kondo model is

r—0 I
Je(r) o (6.16)
with A = min[D, U/2]. This is precisely the result for the Kondo model obtained by Withoff
and Fradkin [22] from poor man’s scaling witb finite, and hence. = D. Likewise
equation (6.18), which withA = D may be cast asn(r) = D(1 — J.(r)/J)Y", recovers
precisely the Kondo scale obtained by Withoff and Fradkin via a |afgaean-field treatment
[22] (and denoted therein bgy). The LMA for the soft-gap Anderson model thus recovers

precisely the correct asymptotics of the corresponding Kondo model in the-linit.

6.3. Phase boundaries: scaling

We return now to the Anderson model for arbitraryto discuss the scaling characteristics of

the phase boundaries predicted by the LMA, and illustrated in figures 7 and 8. Figure 7 shows
the critical AqU” /U (=U""Y) versus- curves for five values of//D: 103,102, 1,10 and

100; from which is seen that fd¥/D « 1 (and in practice fot//D < 0.1-1) the phase
boundaries collapse to a common curve, namely the wide-band limit shown in figure 5. By
contrast, and for the sanig/ D values, figure 8 shows the resultant critiaglD” / U (=D’ /U)

versusr curves; from which it is evident that fd//D > 1 (and in practicd//D = 10)
common scaling of the phase boundaries again arises. Thus, although the model contains
two independent parameters—namély= U/Aé/(l”) andU/D—it is clear that the phase
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3

0.6

Figure 7. LMA phase boundariesAqU" /U). versusr for (top to bottom)U/D = 100, 10, 1,
102 and 10°3; for U/D « 1 common scaling occurs (bold line), as discussed in the text.

8

0 I
0.0 0.6

Figure 8. LMA phase boundarieéA oD’ /U ) versusr, for (top to bottom)U/D = 1073, 1072,

1, 10 and 100; fol//D > 1 common scaling occurs (bold line), as discussed in the text. Inset:
the limiting U/D > 1 phase boundary on an expanded scale, compared to the0 Kondo
asymptote (dashed line) af-/8.

boundaries exhibit one-parameter scaling for the two distinct regihyd® <« 1 and>>1,
according to whether the impurity leviel| = U/2 lies respectively well within or outside the
band.

The behaviour found generally above is in fact suggested by the asymptoticrisuit
of section 6.1, namelyAoA"/U). = mr/8 with A = min[D, U/2]. Moreover, the scaling
illustrated in figure 7 fol <« D has been observed in NRG calculations by Gonzalez-Buxton
and Ingersent [21], who find excellent scaling tdf D = 0.2 and 002 (see figure 20 of [21],
where for the symmetric model the quantity/; there plotted is precisel§8/m)(Ao)" /U )¢
with A = U/2). These authors have also given an argument, based upon poor man’s scaling
for the soft-gap Anderson model [23], as to Wy oU" /U). = Ug—l should be universal,
although we note that a simpler argument explains this: as the band®idth co—which
is possible forr < 1 (section 2.1)—this scale in effect drops out of the problem, which thus
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depends solely on the dimensionless ratie= U/AY ™",

ForU/D > 1 by contrast, botl/ andU/ D are relevant in determining the scaling curve,
but occur solely in the combinatiaky D’ /U (=U"~%(D/U)"). This too is readily understood,
since forl¢;| = U/2 > D the impurity—host coupling is controlled by the hybridization
A (D) = AgD" which, together with/, sets the natural energy scales upon whose ratio the
phase boundary thus depends (NRG calculations for the regjifi®e > 1 have not to our
knowledge hitherto been reported, and will be given in a subsequent publication [31]). We
emphasize however that the liniit/ D — oo doesnotimply the total suppression of charge
fluctuations close to the limiting SC/LM phase boundary of figure 8, sixgl” /U = ®(r)
remains in generdinite at the transition. Charge fluctuations only become negligible as
r — 0, where®(r) ~ r and the condition equation (6.3) for applicability of the Schrieffer—
Wolff transformation holds. For this reason the phase boundary of the Anderson model, even
asU/D — oo, differs from that for the Kondo model save for— 0. Nonetheless, as one
expects physically fot/ /D > 1, the criticalA¢gD” /U remains closer to its ‘Kondo asymptote’
of 7r/8 over a wider--range than arises fd7/D « 1 (figure 5). This is seen in figure 8
where the 1Kondo asymptote is reached in practice f§r0.1, and departure from it is modest

forall r < 5

6.4. Comparison to NRG

We now compare quantitatively the LMA phase boundary with NRG results previously reported
for the regimel//D « 1 by Bulla, Pruschke and Hewson (BPH) [28] and Gonzalez-Buxton
and Ingersent (G-BI) [21]. BPH have obtained the phase boundawy f& = 0.001, and
G-Bl for U/D = 0.02 and 02. These values dff /D are sufficiently small that one is in the
universal scaling regime where (see figure 7) the critisg/” /U is independent ot/ / D;
as noted above, this is demonstrated explicitly in figure 20 of [21]. The NRG results for
(AU /U) versus- are shown in figure 9, together with the corresponding LMA result (for
the wide-band limit// D — 0, as given in figure 5); the inset shows the data-fer 0.3 on an
expanded scale, and includes the> 0 Kondo asymptote afr/8. It is evident that, except
for the important regime — 0, the two sets of NRG data do not coincide, although they
should: with increasing the BPH results lie increasingly above those of G-Bl. We believe
however that the former results progressively overestimate the phase boundary with increasing
r, support for which will be given in a subsequent paper [31].

From figure 9 it is seen that the LMA phase boundary is in excellent agreement with the
G-Bl results forr < 0.3, where the NRG points essentially lie on the LMA curve. Further,
as discussed in section 6.1, the latter coincides in practice with the Kondo asympte8of
for r < 0.02; and this concurs also with the two lowest 0 points from BPHy = 0.01 and
0.02 (see figure 9 inset).

Forr 2 0.3, the NRG phase boundariesoU" /U); = 0;*1 increase more rapidly than
their LMA counterpart. That such a deviation should occur is not in itself surprising, since
our specific LMA is of course approximate and, although charge fluctuations are obviously
included, it seeks primarily to capture the strong-coupling physics of the spin-fluctuation
regime that is asymptotically dominant for smallAsr — %—, the LMA (AqU" /U). tends
to a constant value (0f0.42; see also figure 5); whereas BPH and G-BI report a divergence
in the NRG phase boundary—as indeed is found at mean-field level wheté” /U). is
known analytically (section 4.1) to diverge 65— 2r)~Y/2 asr — 1—, and which is also
included in figure 9. For reasons that are evident from the results assembled in figure 9, we do
not however believe that the NRG data themselves warrant such a conclusion: to distinguish
numerically between a weakly divergent phase boundary and a finite limit—the latter of which
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Figure 9. ForU/D « 1, comparison of the LMA phase bounda@#oU"/U). versusr (solid

line) with NRG results: G-BI [21] (circles), BPH [28] (squares); lines connecting NRG points are
a guide to the eye only. The mean-field boundary, diverging-as £ —, is shown for comparison
(dashed line). Inset: results for< 0.3 on an expanded scale, including the Kondo asymptote

nr/8 (dashed line).

has been reported in NRG studies of both the symmetric soft-gap Kondo model [27] and the
corresponding two-channel Kondo model [21]—is a delicate matter. We add however that this
remark does not presume a definite answer to the question, for it is possible that the present
LMA may not handle adequately the approach te % which is without doubt a subtle limit

worthy of further study.

7. Dynamics: single-particle spectra

The ability to describe successfully single-particle spectra constitutes a stringent test of any
approximate many-body theory. This is true even for the normealD Anderson model, where

as mentioned in section 1 current theories have had somewhat limited success; and which is
but a limit of the naturally more subtle generic case-af 0. In this section we consider
illustrative impurity spectraD(w), arising from the present LMA, on all energy scales and

for both SC and LM states. Low-frequency spectral characteristics in the SC phase, and in
particular the predicted scaling thereof as the SC/LM phase boundary is approached, will be

investigated in section 8.
For a representative < % we begin with an overview of spectral evolution upon

decreasind/ = U/Ay"™" through the LM phase, into the SC state and towards the weak-
coupling limit; including comparison of spectra on either side of the SC/LM phase boundary,
and a brief discussion of the many-body broadening characteristic of the high-energy Hubbard
satellites, which is correctly captured by the present theory. The weak-coupling (0)

behaviour of the spectra is then considered (section 7.1), forrb@il‘% where the resultant

state is SC (see e.qg. figure 5) and- % where it is LM. Forr < % andr > 1 in particular,

where perturbation theory i about the non-interacting limit is known to be applicable [29],
we show that the present theory is perturbatively exact to (and including) second otder in
Finally, comparison is made (section 7.2) to published NRG results for single-particle spectra
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in both SC and LM phases [28].

The procedure for determining the impurity Green functidfw), and hence the single-
particle spectrumD(w) = —m~tsgnw)Im G(w), is simply summarized:G(w) is given
by equations (3.2), (3.3), with interaction self-enerdizgw) (to which the symmetry equ-
ation (3.5) applies) given by equation (3.8), the dynamical contribution to whigh), is given
in the present LMA by equation (5.8); and in the SC phase the pinning condition equation (5.9)
is enforced as described in section 5.1. In figure 10y fer 0.2 (and the wide-band limit),
we show the resultant dimensionless spegttar) = Ay D(w) versuso = w/AY "
upon progressively decreasibigin the LM phase:U = 100 (a), 25 (b), 20 (c) and 17 (d); the
critical U¢(r) ~ 15.8. Figure 11 continues into the SC phase, ith= 14 (a), 7 (b) and 2 (c).

0.1 T T T 0.1 T
(@) (b)
= i i
1l
3 ;1 Jl
—, |
D !‘" v‘t
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r’ \V
o\ 2\
0.0 = = 0.0
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Figure 10. Dimensionless single-particle spech&®) = Aé/(l_”D(w) Versusy = a)/Aé/(l_”

forr = 0.2, with decreasing/ in the LM phase:U = 100 (a), 25 (b), 20 (c) and 17 (d); the critical
Uc(r) >~ 158. In (a) the corresponding mean-field spectrum is also shown (dashed line). Full
discussion is given in the text.

For U = 100 (figure 10(a)),D’(&) is entirely dominated by the Hubbard satellites
centred onw = £U /2, with no spectral structure apparent in the vicinity of the Fermi level,
o = 0. Throughout the LM phasd)’(®) ~ |@|" asw — 0 (see equation (5.3) and
thus vanishes at the Fermi level, as is evident in figure 10. Upon decrddsimghe LM
phase, however, a narrow low-energy structure develops in the vicinity of the Fermi level, and
becomes increasingly pronounced (figures 10(b)-10(d)) iaslecreased towards the LM/SC
phase boundary di.(r). This is a precursor, in the LM phase, of the| " -divergence in
D(w) characteristic of the SC phaseas— 0. The latter in turn is evident in figure 11 for
U < U.inthe SC phase where, with further decreadinghe Hubbard satellites progressively
lose intensity, evolving smoothly to weak spectral shoulders and naturally vanishing entirely
asU — 0.

To illustrate the spectral evolution as the LM/SC phase boundary is approdehéd,
(again forr = 0.2) is shown in figure 12 fof/ = 16.1 (LM) and U = 15.5 (SC), i.e. for
U/Us(r) = 1+ 8 with § ~ 0.02 « 1; the inset compares the low-frequency behaviour of
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Figure 11. As figure 10, but forl < U, in the SC phasel/ = 14 (a), 7 (b) and 2 (). In
(a) the corresponding mean-field spectrum is also shown (dashed line); and in (c) the spectrum
arising from second-order perturbation theoryjir{section 7.1) is also shown (dashed line). Full

discussion is given in the text.
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Figure 12. Single-particle spectrd®’ (@) versusa close to the SC/LM phase boundary. For
r =02, withU = 161 (LM, solid line) and 15.5 (SC, dashed line); the critical(r) = 15.8.
Inset: loww behaviour on a much expanded scale.§As |1 — U/U¢| — 0, LM and SC spectra

coincide to arbitrarily low energies.



1016 D E Logan and M T Glossop

the spectra fof@| < 1 x 10°°. As can be seen, the LM and SC spectra are nearly coincident
on all frequency scales save the lowest (figure 12 inset); ard-as0 the LM/SC spectra
coincide to arbitrarily low energies, whence the spectra evolve smoothly as the phase boundary
is approached.

The behaviour described above is naturally not specific400.2, and figure 13 shows
a corresponding spectral series fo= 0.4. The principal difference from figures 10, 11 is
that, sincel.(r = 0.4) ~ 8 < U.(r = 0.2) (see figure 5), the Hubbard satellites are less well
developed in the vicinity of the SC/LM phase boundary.
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-15

Figure 13. Spectral serie®’(v) = A(l,/(l_’)D(w) versuse for r = 0.4 with (top to bottom)J/ =
3,6(SC), 9, 12, 15, 18, 21 and 24 (LMY(r) ~ 8.0.

Before proceeding we comment on the strong-coupling behaviour of the Hubbard satellite
bands inD(w). In figure 10(a) we superimpose the corresponding UHF speciyim) =
%[D?(w) + D(j(w)] with D%(w) given by equation (4.3). This contrasts strongly with the
full LMA spectrum D(w): the width of the LMA Hubbard satellites is essentially doubled,
and their peak heights halved, compared to the mean-field result. This additional many-body
spectral broadening is well known for the normat 0 Anderson model (see e.g. [6, 30]).

Its physical origins refledboth processes illustrated in figure 2 whereby, having added a
spin electron to a-o-spin occupied impurity, either the addeespin or the—o -spin already
present may hop off the site (figures 2(a) and 2(b) respectively). The former alone (‘elastic
scattering’) is captured at UHF level; whereas the latter, involving correlated electron motion,
is also captured with the present LMA and doubles the rate of electron loss from the impurity
site, thus doubling the width of the Hubbard satellites (with concomitant halving of their peak
intensity).

The additional many-body broadening clearly occurs only if the impurity level lies within
the bandlU/2 < D (for U/2 > D the Hubbard satellites are essentially unbroadened poles).
And its formal origins reside in equation (5.27) f‘ﬁﬂr (w) appropriate to the LM phase: as
U — oo, the poleweightD (and local momentuo|) naturally saturate to unity, the second
term in equation (5.27) is of negligible intensity aid (w) ~ 7U?D)(w)6(—w); using
equation (4.3) forDj’(a)) thus yieIdsE'T(a)) ~ A (w) for frequencieso ~ —U/2 appropriate
to the lower Hubbard band (LHBY7 ; (w) follows from equation (3.3) with self-energy

- e 1
Siw) 'R —5U+ %)
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and fore ~ —3U the impurity Green function itself is given & — oo by G (w) ~ 3G ()
(as follows from equation (3.2) noting thdt, (w) is centred orw ~ +%U). Hence, for
frequencies» ~ —U/2 in the LHB,
1
U—o0 2 i U
G(w) = ~ : fw o~ —— 7.1
(@) (@+U/2) — 2iA (@) Py (7.1)

(where we have neglectetizr(w) and Z?(w) since these merely induce a small shift in the
satellite positions that vanisheslds— oo); the analogous result for the upper Hubbard band

follows from particle—hole symmetry;(—w) = —G(w). By contrast, the corresponding
mean-field resulGo(w) ~ %QT(a)) produces
1
U—o0 2 . U
G ~ , o~ ——. 7.2
o) (@+U/2) —iA(o) “TT2 (7.2)

The additional spectral broadening, and consequent halving of the satellite peak intensities,
is evident from equation (7.1) in comparison to its mean-field counterpart equation (7.2); and
equation (7.1) is found to provide a numerically accurate description of the Hubbard satellites
in strong coupling, for any in the LM phase.

The above qualitative behaviour is not however confined exclusively to strong coupling,
but persists in practice throughout the LM regime and (fo %) into the SC state.
This is seen in figure 11(a) for = 0.2 andU = 14 in the SC phase: the Hubbard
satellites inD (w) remain centred om ~ +U/2 and, in comparison to the mean-fidlg(w)
(superimposed on the figure), the additional many-body broadening and halving of the satellite
peak intensities remains clearly evident. We add further that-as0, whereU(r) ~ 1/r
(see equation (6.11)), the SC phase persists to increasinglylargad equation (7.1) can
again be shown to hold asymptotically for the SC state, starting from equation (5.12) for the
self-energy appropriate to the SC phase and employing a directly analogous argument to that
given in [30] for ther = 0 Anderson model.

7.1. Weak coupling

We consider now the behaviour of the spectra in weak coupling; 0, focusing separately
onther-regimes < 3,r > land < r < 1, and recalling that for <  andr > 1, conven-
tional perturbation theory ity about the non-interacting limit is known to be applicable [29].
We begin withr < % where asU — 0 the ground state is SC (see e.g. figure 5).
Upon decreasing in the SC phase, the local moméni determined self-consistently from
equation (5.9) (see section 5.1) progressively diminishes and vanishe&gat=a Uy (r)
(<l7§(r) (see section 4.1), as found in our previous study ofrthe 0 Anderson model
[30]). ForU < Uy, || = 0 is the sole solution; and since the mean-field propaggtatis)
(equation (4.2)) depend ari and the spinr solely in the combinatiow U |u|/2, both they
and the polarization bubbl&$1(w) (equation (5.3)) are independent of bdthand the spin
indices, and are given by the non-interacting limit result. In consequence the interaction
self-energie,, (w) (equation (5.8)) are likewise-independent, and hence coincide with
the single self-energy (w) defined by equation (2.12) (as follows using equations (3.2),
(3.3), (3.8)). From equation (5.8) foE,(w) = X(w), the U-dependence of the self-
energy thus arises from the explidit>-prefactor thereto, together with tlé-dependence
of (IT*~(w) =) M(w) = °M(w)/(1 — UTI(w)) entering the self-energy kernel. But for
U < Uy, M(w) may be expanded perturbatively &f; and its leading term?IT(w), when
used in equation (5.8) foE (w), recovers precisely the result of conventional second-order
perturbation theory (SOPT) iti [29].
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Thus, while the primary emphasis of the present LMA is naturally on the strong-coupling
behaviour dominated by the low-energy spin-flip dynamics, the resultant theory<f1)r:—2L
is also perturbatively exact to/including second ordetimsU — 0. This is seen clearly
in figure 11(c) forr = 0.2 andU = 2, where the full LMA spectrum is compared to its
SOPT counterpart. We also add that it is straightforward to show that the stability condition
equation (5.21) required for the SC state is always satisfied therein; and in particular that
Rell* (w = 0) evolves smoothly a§ passes througbio(r), and is both positive definite and
finite for all U < U.(r) in the SC phase. In consequence, the LMA spectfuma) likewise
evolves smoothly upon decreasitigin the SC phase.

We nowturnto- > 1 where the ground state is LM fall U, including the non-interacting
limit U = 0 (see section 2.1 and [29]). Here too the present LMA recovers asymptotically
the results of conventional SOPT &s— 0; as seen clearly in figure 14 fer= 1.5 with
U=75x10%*andU/D = % where the LMA and SOPT spectra are compared. The spectra
are shown on a logarithmic scale to bring out clearly the dotsehaviour, which a&/ — 0 is
given by the SOPT result equation (5.31), namely

(AF " D) =) D'@) ~ [12/n (Tg)|al"

to which end fr(Uq)?/12]D' (&) is plotted. As seen from figure 14, the difference between
the LMA and SOPT spectra for the choséris barely perceptible, and becomes even less so
with further decreasing .
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Figure 14. Comparison between LMA (solid line) and SOPT (dashed) spectra, fo1.5 with
U =75x10"%andU/D = %; [7(Uq)?/12]D’ (&) versusi is shown on a logarithmic scale. As
U — 0, the LMA recovers SOPT precisely. Full details are given in the text.

In contrast to thé/ — 0 behaviour for < % however, this result is rather remarkable.

Forr < % with a SC ground state d$ — 0, the self-energies, (w) coincide precisely

with each other and with the single self-ene@yw), as shown above: all self-energies are
equivalent. But this is not the case for> 1. Here, even a§ — 0, the local moment

| ol remains finite (see equation (4.13))}~ (w) is not therefore expandable perturbatively in

U, and the self-energies; (w) and X, (w) do notcoincide. Nonetheless, from a knowledge
solely ofET(w) = —Ul|uol/2 + Z4(w), the single self-energ¥ (w) may still be obtained
directly from equation (3.7) which is quite general; as now considered for arbitrary interaction
strength, focusing on the salient low-frequency behaviour.d ke 0 behaviour 012#(0)) is
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given for the LM phase by equation (5.29), andsfor 1 it is straightforward to show that the
corresponding real part has the I(w\behaviourZ?(w) — Z?(O) ~ —yowithy =yU) >0
given by equation (5.28. Using this in equation (3.7) leads to the following lenbehaviour
of Z(w) = ZR(w) —isgnw)Z!(w) for r > 1:

o3 220 SR AN2 Tq 3¢° Ay ()

S [1+qy(U)5(‘“)+(1+qy(U>)2 o7 ] (7%
R\ @20 SR.A\2 q l

I (w) (ONO)) l+qy(U)P<w) (7.30)

(with corrections Q|w|"~2; |w|) in the latter case); whete= [1 — (d Ar(w)/dw)w—0] " given
by equation (2.18) is the poleweight in the non-interacting single-particle spectrum.

Equation (7.3) is quite general. But & — 0, y(U) may be shown to vanish and
2R(w = 0) is dominated by the Fock contribution ef}U|uol, with |uo| — g asU — 0
(see equation (4.13)). Hence, fdr— 0, equation (7.3) for example reduces to

U—>8 2q2
> (w) N [7g8(w) +3A0q%w|?]. (7.4)

This is precisely the result obtained from conventional SOPT ferl; see equations (5.10),
(5.11) of reference [29]. And we note that its correct recovery reflects the fact that the prefactor
to thew-dependence af'/R(w) in equation (7.3), namelyi[ﬁe(O)]2 ~ [3U]uoll? astU — 0,
is O(U?) asU — 0.

The latter remark also sheds some light on the inapplicability of conventional perturbation
theory inU for % < r < 1, since within SOPT the prefactor to thedependence & '/R(w) is
O(U?) by construction. The lows behaviour of!/R(w) in the LM phase for < 1 has been
considered in section 5.2 and is given generally by equation (5.33), exhibiting a characteristic
|w|~"-divergence as& — 0 with a U-dependent prefactor that is agaiiﬁ(O)]z; and for
1

5 < r < 1the LM phase occurs for all > 0 (figures 5, 7, 8); henc& — 0+ can be

considered. As for > 1, [E}(0)]? ~ [3U|uol]® again asU — O; butfory < r < 1

the local momentuyo| is given by equation (4.12) and itself vanishestas— 0, whence
[ZR(0)]? ~ U¥/&-D asU — 0. Forj < r < 1 the prefactor to the--dependence of
»!'/R(w) thus vanishes a8 — 0, but with an exponent = 2r/(2r — 1) that is in general
non-integral and strictly greater than 2. Such behaviour cannot by construction be captured
by SOPT (or indeed by conventional perturbation theory to any finite ordé};ian inability

that is not unexpected when one recalls that the ground state of the strict non-interacting limit
U =0is SCforallr < 1[29].

We emphasize, however, that while the behaviour in the LM phase ditigge self-
energy (w)—obtained as a by-product of the LMA via equation (3.7)—is both singular and
dependent upon whether= 1 (cf. equations (7.3), (5.33)), the same does not hold for either
the self-energie&, (w) central to the LMA (see section 5.2) or the single-particle spectra;
in particular, the loww behaviour ofD(w) for all U > 0 in the LM phase iD(w) ~ |w|"
(equation (5.3p)) for anyr > 0.

7.2. Comparison to NRG

We now compare predicted LMA spectra with the NRG results of Bulla, Pruschke and Hewson
[28], obtained for a fixed//D = 102 using a discretization parametar = 2 (A — 1
recovers the continuum limit) and witk800 states retained at each NRG iteration. The
two sets of spectra are shown in figure 15 as a functiow /b, on a logarithmic scale to
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D(w)

D(w)

Figure 15. Comparison between LMA spectra (a) and NRG spectra [28] (b) for tixga = 103,
(i) r = 0.25, Ag = 0.02 (SC, solid line); (iiyr = 0.25, Ag = 0.0002 (LM, dotted); (iii)r = 0.75,
Ao = 0.02 (LM, dashed). Spectra are shown on a logarithmic scale, as a functigtiof

show clearly the lows behaviour; for (i)r = 0.25 andAg = 0.02 (SC state{J ~ 0.18);
(i) r = 0.25 andA = 0.0002 (LM state[J ~ 85); (iii) » = 0.75 andA = 0.02 (LM state,
U =6.25x 10%).

The characteristi@ — 0 behaviour of the two phases is clearly seBfy) ~ |w|" (LM)
and~|w|™" (SC). The two LM spectra have pronounced Hubbard satellites, that£00.75
being centred precisely at = U/2; while in the SC spectrum—uwhich is a weak-coupling
example  ~ 0.18)—the satellites are no longer a distinct feature and have been absorbed
into the band.

The agreement between the LMA and NRG results is self-evident. For the SC example
in particular, the agreement is essentially perfect fowalhen a small, controlled degree
of spectral broadening is used to smooth the (necessarily discrete) NRG data [35]; and the
o — 0 behaviour of the NRG data is readily shown to coincide precisely with that of the
non-interacting limit (equation (2.11)), as we have shown is required for the SC state (see
section 2.2 and [29]).

Finally, we note that the present LMA includes 1} (w) the sum of all particle—hole
interactions in the transverse spin channel (figure 3(a))—that captures the low-energy spin-flip
physics (section 5)—and one can of course additionally include repeated particle—particle and
‘bubble’ interactions (see figure 9 of [30]). However, as in reference [30] for the nermd)
Anderson model, these have a very minor effect on predicted spectra and are not therefore
considered explicitly in the present work.

8. Spectra: pinning and scaling

We turn now to arather subtle, and superficially hidden, aspect of the problem: scaling of single-
particle spectra in the SC phase< %) as the SC/LM phase boundary is approached. Such
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behaviour is of course well known for the normrak= 0 Anderson model (see e.g. [2, 4, 15])
where with increasing/ the width of the Kondo resonance in(w) becomes exponentially
small, reflecting the exponential diminution of the Kondo seale(see equation (6.13)); and
the Kondo resonance becomes a universal functiepyafy .

Ther = 0 universal scaling curve has three essential characteristics:

() Itis pinned at the Fermi levebr AgD(w = 0) = 1 for all U;

(ii) with characteristic low-frequency Fermi liquid behavioud(w) — D(0) ~ [w/wx]? for
w/wg K 1.

(iii) On largerw/wk scales the spectrum follows a Doniaémjié law [13—-15] indicative of
the orthogonality catastrophe, wherebyw) ~ [|o|/wx]~* with « = 1 — 2[8/7]? and
8o = /2 the Fermi level phase shift; i.&(w) ~ [|w|/wg]~Y?. This has been observed
in both a QMC study of the = 0 symmetric spin% Anderson model [15] and an NRG
study of D(w) for w < 0 in the asymmetric case [14]; in practical terms, Donizimmjif:
(DS) behaviour in the scaleld(w) sets in forw/wgx = 1 [14, 15].

The question arises as to whether the above behaviour is specificitetiteAnderson
model, a conventional Fermi liquid; or whether it is but a particular example of behaviour
generic to the SC phase for any< % We show it to be the latter, and to be directly and
generally apparent not iR (w) itself but in the modified spectral functioh(w) = |w|" D (w).
Thatthisis sois natural, since (a) itASw) that is pinned at the Fermilevel= 0 for anyr > 0
where a SC state obtains (section 2.2 and [29]); and (B)(i) the unrenormalizegto|~"-
divergence inD(w) has been removed, thus ‘exposing’ directly the low-frequency many-body
renormalization characteristic of the Kondo effect, and hence the Kondo scale as shown below.

Specifically, we focus otF (w) defined by

F(w) = 1A [1 +tan"<%r>:| |w|” D(w) (8.1)

which, in the SC phase, is pinned at the Fermi level (equation §.16 (w = 0) = 1 for
anyr. Figure 16 illustratest (o) versuso = w/Ag " for r = 0.2 in the wide-band limit,

05 B

F(w)

-20 -10 10 20

Sl ot

Figure 16. F(w) versuso = w/Aéﬂlf") in the SC phase; for = 0.2 (the wide-band limit) with
U = 5,10 and 15. Note the spectral pinning(0) = 1) and diminishing width of the Kondo
resonance with increasirig towardsU¢(r) ~ 15.8 wherewy, — 0.
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with U = 5,10 and 15 € U.(r) ~ 15.8). Spectral pinning is evident. More significantly, so
too is a generalized Kondo resonancefitw) which has (a) cusp behaviour as— 0, and
(b) a width (Kondo scale) that narrows progressively upon increasingwardsU.(r) and
vanishes a& — U(r)—. We show below that the latter is the spin-flip scalg(r) discussed
in detail in sections 5 and 6.

First we establish the low-behaviour ofF (w), and its cusp characteristics. This follows
from D(w) = %[D¢(w)+D¢(a))] with D, (w) = —7~1sgnw) Im G, (w), using equation (3.3)
for G, (w) together with equations (2.5), (2.9) fa,r(w) and if}(a)) ~ —ywasw — 0
(equation (5.19)). (Sinc‘é},(w) decays to zero more rapidly thilf(w), see equation (5.17),
it is irrelevant to the leading lows behaviour.) The result is

F@) = 1-sin@r) gt + el — (gt )%@leRY (8.2)
with ¢ ~* given by equation (2.1 (here forr < %); and

b(r) = C0§<%r> [1 _ 4sinz(%r)]

such that (0) = 1. Forr > 0, F(w) as® — 0 is thus dominated by a@|*"-cusp (seen in
figures 16 and 19 (bottom) shown below); but its prefactor vanishes-a, and forr = 0
the parabolic Fermi liquid behavioWf(w) — 1 ~ @? characteristic of the normal Anderson
model is recovered.

We now determine the behaviour &f(w), equation (8.2), a¥ — U.(r)— where the
low-energy spin-flip scalen, () vanishes as described in sections 5.1 and 6.2; and for which
y = —(ai$(w)/aw)w:0 is thus required. The full self-ener@?(w) = —1U|u| + TR (w)
is given generally in the SC phase W(a)) = E?(w) — E?(O) (from equation (5.9)); and
the loww behaviour ofE?(w) may be extracted analytically in strong couplibg > 1
where, from a trivial extension of the argument given in section 6.1 leading to equation (6.4),
TR () ~ U?Reg| ( + o). Using equation (68 (with x = 3U) for thew > 0 behaviour
of Reg, (») then yields

SR 020 4o, @\
() sincer) W [(1 + wm) 1:| (8.3)

(with corrections Ofwm/2) (1 + w/wm)]) wherer = min[D, U/2]; and hence fot/wm < 1
the requisite loww behaviour

~ — 4}"
$R(e) <0 — ol = — 8.4
T S O 0= T (64
From equations (8.2), (8.4) the asymptotic behaviourreh) as the SC/LM phase

boundary is approachetf, — U.(r)—, is thus given by

p 1 |w| 4y 2 |5)| 2(1-r) 8.5
(@) <wm> - (sin(m)) “"”(a) (8:5)

(where the terms involving ! drop out sincewn(r) — 0). The specific--dependent
coefficients here are naturally valid asymptotically-as> 0, since the above analysis holds
strictly asUc(r) — 00 (see section 6.1 and equation (6.11)); although in praéfice) > 1
forallr < 3 (see e.g. figure 5). The important point of course is #ab) exhibits universal
scaling; and that, as expected physically, it is indeed the spin-flip or Kondo eagrgythat

sets the scale for such behaviour. Note relatedly that the physical content of equation (5.20)
for the SC phase is the restoration, for sufficiently long times, of the locally broken symmetry
inherent to the zeroth-order mean-field level of description; and that this timescalej{ds
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for the normal Anderson model [30], the result for which isithe 0 limit of equation (8.4)).
For the doubly degenerate LM state by contrast there is naturally no such symmetry restoration,
reflected in the fact thaf, (w) and X (w) do not coincide a® — 0 (see equation (5.29)).

The analysis above, while demonstrating universality, is confined to the low-frequency
behavioutw/wm < 1. We now consider the scaling behaviout/fw) over the entireo/wm
range.

8.1. Scaling ofF (w)

We begin with ther = 0 Anderson model, for whictF(w) = wAgD(w). The resultant
F(w) versusw/wn obtained from the LMA is shown in figure 17, which universal form is
reached in practice fa > 57 [30]. This scaling spectrum was itself obtained in [30], but
one important facet of it was not noted (and we are grateflél E Ruckenstein for bringing

it to our attention): the DS tails fab/wm 2 1 are captured by the theory. This is seen in
figure 17 where alw/wm) Y/ fit is made to the wings of the spectrum. Detailed comparison
between the LMA scaling spectrum and NRG calculations will also be given in a subsequent
paper [31]; suffice it here to say that the agreement is rather good. To our knowledge the LMA
is the only theoretical approach that captures simultaneously the characteristicHewni

liquid behaviourD (w) — D(0) ~ [w/wm]?, and the DS tails fow /wy, > 1 that are known to

arise experimentally (see e.g. [16]) but to be washed out in e.g. slave-bosoN exfpansion
approaches [10-12].

1.0

0.0 S : : :
-30 -20 -10 0 10 20 30

Figure 17. Scaling for the normal(= 0) AIM: F(w) = 7 AgD(w) versusw/wm. The Doniach—
Sunij tails are seen from th@/wm) ~Y/? fit to the wings of the spectrum (dashed line).

We also point out the apparent small spectral feature occurring in figureud/eogt ~ 1.
As discussed in [30] this is entirely an artifact of using the specific form equation (5.2) for
[T~ (w) in equation (5.8) for the self-energy. This is not however an integral element of the
LMA and (as discussed in [30]) may be circumvented, thereby eliminating the spectral anomaly
but otherwise producing no significant effect on either the scaling spectrum (see figure 12 of
[30]) or previously deduced asymptotics. The same feature is naturally present also in the



1024 D E Logan and M T Glossop

r > 0 spectra below, and can likewise be removed; but it is a minor effect that we are content
to live with in the following.

Forr = 0.2, the resultanf () for the wide-band limit is illustrated in figure 18 for =
10, 13 and 15. The inset shows the central portion of the Kondo resonance—whose halfwidth
is proportional taom (r), as for the- = 0 model [30]—versug = w/Ag ™" on an ‘absolute’
scale, toillustrate its rapid narrowing with increastihgnd vanishing a8 — U.(r)— =~ 15.8.
The main figure by contrast show&w) versusw /wm, from which universality is evident; and
note that althougﬁ/c(r) is finite for allr > 0, the Hubbard satellites are again eliminated from
the scaling spectrum sineg,(r) — 0 asU — U.(r)—. We add moreover that whilé.(r)
itself depends on the host bandwiddh(see figures 7, 8), the latter has no detectable influence
on the scaling spectrum; as is expected physically, and indeed seen from equations (8.2), (8.5)
where theD-dependence of the former (contained;int) is eliminated in equation (8.5) as
om(r) — 0.

1.0

0.0 — : : :
-30 -20 -10 0 10 20 30

Figure 18. Scaling behaviour of Kondo resonance for the- 0 SC phase: for = 0.2, F(w)
versusw/wm for U = 10 (dotted), 13 (dashed) and 15 (solid). Inset: the corresporing

versuso = a)/Aé/(lf") on an ‘absolute’ scale, to show the narrowing of the Kondo resonance
upon increasing7 towards the SC/LM transition &f;(r) ~ 15.8 wherewm, — O.

Finally, figure 19 (top) compares the universal scaling spe€tta) versusw /wm for r =
0, 0.2 and 0.4; while figure 19 (bottom) shows the data on a reduced®stalg < 1 for
five differentr-values, to illustrate in particular the evolution of the lameusp behaviour
(equation (8.5)). From figure 19 (top) it is seen that, as forrthe O case, DS tails again
arise in the scaling spectrum far/owm 2 1. Numerical analysis shows these to have the
form F(w) ~ [@/wm] ™" with exponenb(r) = % — r, thus ‘flattening out’ with increasing
as is evident in figure 19 (top). Note moreover from equation (8.1) that vinile) itself is
not a universal function ab/wm, wj, D(w) x (lw|/wm)™" F(w) does exhibit scaling. Its DS
tail behaviour is thus~(|w|/wm)~Y? as for the normat = 0 model; and we note that this
conforms to the DS law exponent ef = 1 — 2[8y/x]?, since forr > 0 the phase shift,
precisely at the Fermi level is readily shown tosbg, as for the- = 0 case.
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Figure 19. Universal scaling spectté(w) versuso/wm. Top: forr =00.2 and 0.4. DS tails arise
in all cases, and ‘flatten out’ with increasingdetails are given in the text. Bottom: fef/wm < 1
andr = 0, 0.05, 0.1, 0.2 and 0.4 (from outside to inside), to illustrate the evolution of thelow-
‘cusp’ behaviour.

For ther > 0 SC phase generally, the local moment approach thus predicts universal
scaling of the modified spectral functiof{w) (equation (8.1)) as the SC/LM phase boundary
is approached; with characteristic Fermi level pinning, lowusp behaviour and DS tails in
F(w). In a subsequent paper [31] we shall see that these predictions are borne out by NRG
calculations, to which detailed comparison will be made.

9. Summary

We have developed in this paper a many-body local moment approach to the symmetric soft-
gap Anderson impurity model, including the ‘normal’£ 0) Anderson model as a particular

limit [30]. The LMA is naturally non-perturbative, and both the notion of local moments and
thea priori possibility of either a SC or LM state are introduced explicitly aetl-consistently

from the outset; as reflected in the employment of an underlying two-self-energy description,
together with self-consistent imposition of theindependent spectral pinning condition at

the Fermi level that is characteristic of the SC phase [29].

The primary emphasis of the LMA is on single-particle dynamics—posing well known
and hitherto unsurmounted difficulties for traditional theories—but an integral element of the
approach also permits direct analysis of the SC/LM transition and associated phase boundaries.
The theory offers a rather comprehensive description of both SC and LM phases, fogdhy
The entire range of interaction strengths is also covered, including the Kondo/spin-fluctuation
physics that dominates the SC phase at large interaction strengths, and the ‘cost-free’ spin-flip
physics of the LM state; as well as the weak-coupling (srf@albehaviour that is not as prosaic
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as naive expectation might suggest, being intrinsically non—perturbati\ésior <1

While the theory leads to very good agreement with extant NRG calculations [21, 28],
a significant number of further predictions arise from it that can likewise be tested, in regard
both to phase boundaries and dynamics; and including for example the predicted universal
scaling of SC spectra as the S€ LM transition is approached—Ileading to asdependent
family of universal spectra, of which that well known to arise for the normal Anderson model
should represent but a particular example, symptomatic of generic behaviour characteristic of
the SC (or ‘generalized Fermi liquid’) phase. These issues will be taken up in a subsequent
publication [31], where predictions arising from the LMA will be shown to be remarkably well
supported by benchmark NRG calculations.
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Appendix

We outline the asymptotic behaviour of the self-consistency equation (4.6) for the mean-field
local momentju|, asx = %U|u| — 0; the SC/LM phase boundary at mean-field level can
thereby be found; see section 4.1. The general case of a finite hybridization/host bandwidth
D is considered, whence (section 4.1) h&(w) contain pole contributions from outside the
band (w| > D) for all x > 0; the corresponding poleweights are denoted)dywith +/—
forw > D andw < — D respectively.

From equation (4.6) the UHF self-consistency equation is thus

0
| = [D do [Dd(w) — DO(w)] + [Q(ﬁ —~ Qi‘)] (A.1a)
= f0) +[ 0 - 0f] (A.1b)
= f(x) (A.lC)

where (from equation (4.3))

0 1 1
Jolx) = f_D Elai [(w +x — Ar(@)?+ A2) (0 —x — Ar(w)? + Af(w)} '
(A2)

Itis straightforward to show that the pole contributiogs T’ — Q{™'] ~ O(x) asx — 0; we
thus focus onf,(x).

Al.0<r <12

2
From (A.2),

<afb<x)> _ A fO o D@0 — Ar(@)] (A3)
0 -

ox "7 )5 (0 - Ar@)]2+ AZ)?

/g
The low-w behaviour of the integrand in (A.3) is|w| %", whence the integral converges for

r o< % In consequencgy(x), and hencef (x), is O(x) asx — O0; i.e. the exponent in

equation (4.9) isn = 1. Forr < % the mean-fieldJ; = U2(r) is thus finite and given by
equation (4.10).
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A2.%<r<1

The integral in (A.2) is controlled by its lows-behaviour, and we replacer(w) therein by
its low-w form Ar(w) ~ —sgnw)B(r)Aglw|” (equation (2.9)), wher@(r) = tan((z/2)r).
Transforming the integration variable in (A.2) fromto z = (A¢/x)Y"|w| then yields for
r<1

sz A-r/r 1 /OO r|: 1 _ 1 :| A4
L e S T E i e T Fo e R

This integral converges only for > % whence, for% < r < 1, fp(x) and hencef (x) have
thex — 0 behaviourf (x) ~ x™ with exponentn = (1 — r)/r < 1. In consequenceu|
vanishes only a& — 0; see equation (4.12).

A3.r>1

From the normalization condition upcmf,’ (w),

0 D
/D do DY(w) =1 — /0 do DY(w) — [0} + 0{"]. (A.5)

Hence from (A.%), (A.1c) the full f(x) is given by
D
F=1-2 [ do DY) - 105" + 0] (A6)
0

where particle-hole symmetry is useiy(w) = D(—w). Butasx — 0, 1 dw D ()

reduces tofOD dw dg(a)) (with dg(a)) the band contribution to the non-interacting spectrum;
see section 2.1); and far= 0, Q{” = Q') = Qo is independent of . Hence

D
fx=0=1— 2/ dw d (@) — 2Q. (A7)
0

But from normalization of the non-interacting spectrdgiw) (see equation (2.1)),

D
1=q+2/ dow dg(a))+2Qo (A.8)
0

where the weightg, of thew = 0 pole indy(w) is given by equation (2.2). Hence, for
r > 1, f(x = 0) = ¢g; the exponent: in equation (4.9) is thusm = 0, and in consequence
the local moment

x—0

lul ~"¢q (A.9)
as follows from equation (4.8).
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